Files
fcb_photo_review/paddle_detection/ppdet/modeling/reid/resnet_embedding.py
2024-08-27 14:42:45 +08:00

42 lines
1.5 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import paddle.nn.functional as F
from paddle import nn
from .resnet import ResNet50, ResNet101
from ppdet.core.workspace import register
__all__ = ['ResNetEmbedding']
@register
class ResNetEmbedding(nn.Layer):
in_planes = 2048
def __init__(self, model_name='ResNet50', last_stride=1):
super(ResNetEmbedding, self).__init__()
assert model_name in ['ResNet50', 'ResNet101'], "Unsupported ReID arch: {}".format(model_name)
self.base = eval(model_name)(last_conv_stride=last_stride)
self.gap = nn.AdaptiveAvgPool2D(output_size=1)
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
self.bn = nn.BatchNorm1D(self.in_planes, bias_attr=False)
def forward(self, x):
base_out = self.base(x)
global_feat = self.gap(base_out)
global_feat = self.flatten(global_feat)
global_feat = self.bn(global_feat)
return global_feat