Files
fcb_photo_review/paddle_detection/ppdet/modeling/architectures/queryinst.py
2024-08-27 14:42:45 +08:00

105 lines
3.5 KiB
Python

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
__all__ = ['QueryInst']
@register
class QueryInst(BaseArch):
__category__ = 'architecture'
__inject__ = ['post_process']
def __init__(self,
backbone,
neck,
rpn_head,
roi_head,
post_process='SparsePostProcess'):
super(QueryInst, self).__init__()
self.backbone = backbone
self.neck = neck
self.rpn_head = rpn_head
self.roi_head = roi_head
self.post_process = post_process
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
rpn_head = create(cfg['rpn_head'], **kwargs)
roi_head = create(cfg['roi_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
'rpn_head': rpn_head,
"roi_head": roi_head
}
def _forward(self, targets=None):
features = self.backbone(self.inputs)
features = self.neck(features)
proposal_bboxes, proposal_features = self.rpn_head(self.inputs[
'img_whwh'])
outputs = self.roi_head(features, proposal_bboxes, proposal_features,
targets)
if self.training:
return outputs
else:
bbox_pred, bbox_num, mask_pred = self.post_process(
outputs['class_logits'], outputs['bbox_pred'],
self.inputs['scale_factor_whwh'], self.inputs['ori_shape'],
outputs['mask_logits'])
return bbox_pred, bbox_num, mask_pred
def get_loss(self):
targets = []
for i in range(len(self.inputs['img_whwh'])):
boxes = self.inputs['gt_bbox'][i]
labels = self.inputs['gt_class'][i].squeeze(-1)
img_whwh = self.inputs['img_whwh'][i]
if boxes.shape[0] != 0:
img_whwh_tgt = img_whwh.unsqueeze(0).tile([boxes.shape[0], 1])
else:
img_whwh_tgt = paddle.zeros_like(boxes)
gt_segm = self.inputs['gt_segm'][i].astype('float32')
targets.append({
'boxes': boxes,
'labels': labels,
'img_whwh': img_whwh,
'img_whwh_tgt': img_whwh_tgt,
'gt_segm': gt_segm
})
losses = self._forward(targets)
losses.update({'loss': sum(losses.values())})
return losses
def get_pred(self):
bbox_pred, bbox_num, mask_pred = self._forward()
return {'bbox': bbox_pred, 'bbox_num': bbox_num, 'mask': mask_pred}