93 lines
4.1 KiB
Bash
93 lines
4.1 KiB
Bash
#!/usr/bin/env bash
|
||
set -xe
|
||
# Usage:CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${batch_size} ${fp_item} ${max_epoch} ${model_name}
|
||
python="python3.7"
|
||
# Parameter description
|
||
function _set_params(){
|
||
run_mode=${1:-"sp"} # sp|mp
|
||
batch_size=${2:-"2"}
|
||
fp_item=${3:-"fp32"} # fp32|fp16
|
||
max_epoch=${4:-"1"}
|
||
model_item=${5:-"model_item"}
|
||
run_log_path=${TRAIN_LOG_DIR:-$(pwd)}
|
||
# 添加日志解析需要的参数
|
||
base_batch_size=${batch_size}
|
||
mission_name="目标检测"
|
||
direction_id="0"
|
||
ips_unit="images/s"
|
||
skip_steps=10 # 解析日志,有些模型前几个step耗时长,需要跳过 (必填)
|
||
keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填)
|
||
index="1"
|
||
model_name=${model_item}_bs${batch_size}_${fp_item}
|
||
|
||
device=${CUDA_VISIBLE_DEVICES//,/ }
|
||
arr=(${device})
|
||
num_gpu_devices=${#arr[*]}
|
||
log_file=${run_log_path}/${model_item}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
|
||
}
|
||
function _train(){
|
||
echo "Train on ${num_gpu_devices} GPUs"
|
||
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
|
||
|
||
# set runtime params
|
||
set_optimizer_lr_sp=" "
|
||
set_optimizer_lr_mp=" "
|
||
# parse model_item
|
||
case ${model_item} in
|
||
faster_rcnn) model_yml="benchmark/configs/faster_rcnn_r50_fpn_1x_coco.yml"
|
||
set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;;
|
||
fcos) model_yml="configs/fcos/fcos_r50_fpn_1x_coco.yml"
|
||
set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;;
|
||
deformable_detr) model_yml="configs/deformable_detr/deformable_detr_r50_1x_coco.yml" ;;
|
||
gfl) model_yml="configs/gfl/gfl_r50_fpn_1x_coco.yml"
|
||
set_optimizer_lr_sp="LearningRate.base_lr=0.001" ;;
|
||
hrnet) model_yml="configs/keypoint/hrnet/hrnet_w32_256x192.yml" ;;
|
||
higherhrnet) model_yml="configs/keypoint/higherhrnet/higherhrnet_hrnet_w32_512.yml" ;;
|
||
solov2) model_yml="configs/solov2/solov2_r50_fpn_1x_coco.yml" ;;
|
||
jde) model_yml="configs/mot/jde/jde_darknet53_30e_1088x608.yml" ;;
|
||
fairmot) model_yml="configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml" ;;
|
||
*) echo "Undefined model_item"; exit 1;
|
||
esac
|
||
|
||
set_batch_size="TrainReader.batch_size=${batch_size}"
|
||
set_max_epoch="epoch=${max_epoch}"
|
||
set_log_iter="log_iter=1"
|
||
if [ ${fp_item} = "fp16" ]; then
|
||
set_fp_item="--fp16"
|
||
else
|
||
set_fp_item=" "
|
||
fi
|
||
|
||
case ${run_mode} in
|
||
sp) train_cmd="${python} -u tools/train.py -c ${model_yml} ${set_fp_item} \
|
||
-o ${set_batch_size} ${set_max_epoch} ${set_log_iter} ${set_optimizer_lr_sp}" ;;
|
||
mp) rm -rf mylog
|
||
train_cmd="${python} -m paddle.distributed.launch --log_dir=./mylog \
|
||
--gpus=${CUDA_VISIBLE_DEVICES} tools/train.py -c ${model_yml} ${set_fp_item} \
|
||
-o ${set_batch_size} ${set_max_epoch} ${set_log_iter} ${set_optimizer_lr_mp}"
|
||
log_parse_file="mylog/workerlog.0" ;;
|
||
*) echo "choose run_mode(sp or mp)"; exit 1;
|
||
esac
|
||
|
||
timeout 15m ${train_cmd} > ${log_file} 2>&1
|
||
if [ $? -ne 0 ];then
|
||
echo -e "${train_cmd}, FAIL"
|
||
export job_fail_flag=1
|
||
else
|
||
echo -e "${train_cmd}, SUCCESS"
|
||
export job_fail_flag=0
|
||
fi
|
||
kill -9 `ps -ef|grep 'python'|awk '{print $2}'`
|
||
|
||
if [ $run_mode = "mp" -a -d mylog ]; then
|
||
rm ${log_file}
|
||
cp mylog/workerlog.0 ${log_file}
|
||
fi
|
||
}
|
||
|
||
source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在联调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开
|
||
_set_params $@
|
||
# _train # 如果只想产出训练log,不解析,可取消注释
|
||
_run # 该函数在run_model.sh中,执行时会调用_train; 如果不联调只想要产出训练log可以注掉本行,提交时需打开
|
||
|