Files
fcb_photo_review/paddle_detection/ppdet/modeling/architectures/yolox.py
2024-08-27 14:42:45 +08:00

139 lines
4.7 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
import random
import paddle
import paddle.nn.functional as F
import paddle.distributed as dist
__all__ = ['YOLOX']
@register
class YOLOX(BaseArch):
"""
YOLOX network, see https://arxiv.org/abs/2107.08430
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck instance
head (nn.Layer): head instance
for_mot (bool): whether used for MOT or not
input_size (list[int]): initial scale, will be reset by self._preprocess()
size_stride (int): stride of the size range
size_range (list[int]): multi-scale range for training
random_interval (int): interval of iter to change self._input_size
"""
__category__ = 'architecture'
def __init__(self,
backbone='CSPDarkNet',
neck='YOLOCSPPAN',
head='YOLOXHead',
for_mot=False,
input_size=[640, 640],
size_stride=32,
size_range=[15, 25],
random_interval=10):
super(YOLOX, self).__init__()
self.backbone = backbone
self.neck = neck
self.head = head
self.for_mot = for_mot
self.input_size = input_size
self._input_size = paddle.to_tensor(input_size)
self.size_stride = size_stride
self.size_range = size_range
self.random_interval = random_interval
self._step = 0
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
# fpn
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
# head
kwargs = {'input_shape': neck.out_shape}
head = create(cfg['head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"head": head,
}
def _forward(self):
if self.training:
self._preprocess()
body_feats = self.backbone(self.inputs)
neck_feats = self.neck(body_feats, self.for_mot)
if self.training:
yolox_losses = self.head(neck_feats, self.inputs)
yolox_losses.update({'size': self._input_size[0]})
return yolox_losses
else:
head_outs = self.head(neck_feats)
bbox, bbox_num = self.head.post_process(
head_outs, self.inputs['im_shape'], self.inputs['scale_factor'])
return {'bbox': bbox, 'bbox_num': bbox_num}
def get_loss(self):
return self._forward()
def get_pred(self):
return self._forward()
def _preprocess(self):
# YOLOX multi-scale training, interpolate resize before inputs of the network.
self._get_size()
scale_y = self._input_size[0] / self.input_size[0]
scale_x = self._input_size[1] / self.input_size[1]
if scale_x != 1 or scale_y != 1:
self.inputs['image'] = F.interpolate(
self.inputs['image'],
size=self._input_size,
mode='bilinear',
align_corners=False)
gt_bboxes = self.inputs['gt_bbox']
for i in range(len(gt_bboxes)):
if len(gt_bboxes[i]) > 0:
gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x
gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y
self.inputs['gt_bbox'] = gt_bboxes
def _get_size(self):
# random_interval = 10 as default, every 10 iters to change self._input_size
image_ratio = self.input_size[1] * 1.0 / self.input_size[0]
if self._step % self.random_interval == 0:
size_factor = random.randint(*self.size_range)
size = [
self.size_stride * size_factor,
self.size_stride * int(size_factor * image_ratio)
]
self._input_size = paddle.to_tensor(size)
self._step += 1