Files
fcb_photo_review/paddle_detection/ppdet/modeling/heads/centertrack_head.py
2024-08-27 14:42:45 +08:00

245 lines
9.2 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from .centernet_head import ConvLayer
from ..keypoint_utils import get_affine_transform
__all__ = ['CenterTrackHead']
@register
class CenterTrackHead(nn.Layer):
"""
Args:
in_channels (int): the channel number of input to CenterNetHead.
num_classes (int): the number of classes, 1 (MOT17 dataset) by default.
head_planes (int): the channel number in all head, 256 by default.
task (str): the type of task for regression, 'tracking' by default.
loss_weight (dict): the weight of each loss.
add_ltrb_amodal (bool): whether to add ltrb_amodal branch, False by default.
"""
__shared__ = ['num_classes']
def __init__(self,
in_channels,
num_classes=1,
head_planes=256,
task='tracking',
loss_weight={
'tracking': 1.0,
'ltrb_amodal': 0.1,
},
add_ltrb_amodal=True):
super(CenterTrackHead, self).__init__()
self.task = task
self.loss_weight = loss_weight
self.add_ltrb_amodal = add_ltrb_amodal
# tracking head
self.tracking = nn.Sequential(
ConvLayer(
in_channels, head_planes, kernel_size=3, padding=1, bias=True),
nn.ReLU(),
ConvLayer(
head_planes, 2, kernel_size=1, stride=1, padding=0, bias=True))
# ltrb_amodal head
if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
self.ltrb_amodal = nn.Sequential(
ConvLayer(
in_channels,
head_planes,
kernel_size=3,
padding=1,
bias=True),
nn.ReLU(),
ConvLayer(
head_planes,
4,
kernel_size=1,
stride=1,
padding=0,
bias=True))
# TODO: add more tasks
@classmethod
def from_config(cls, cfg, input_shape):
if isinstance(input_shape, (list, tuple)):
input_shape = input_shape[0]
return {'in_channels': input_shape.channels}
def forward(self,
feat,
inputs,
bboxes=None,
bbox_inds=None,
topk_clses=None,
topk_ys=None,
topk_xs=None):
tracking = self.tracking(feat)
head_outs = {'tracking': tracking}
if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
ltrb_amodal = self.ltrb_amodal(feat)
head_outs.update({'ltrb_amodal': ltrb_amodal})
if self.training:
losses = self.get_loss(inputs, self.loss_weight, head_outs)
return losses
else:
ret = self.generic_decode(head_outs, bboxes, bbox_inds, topk_ys,
topk_xs)
return ret
def get_loss(self, inputs, weights, head_outs):
index = inputs['index'].unsqueeze(2)
mask = inputs['index_mask'].unsqueeze(2)
batch_inds = list()
for i in range(head_outs['tracking'].shape[0]):
batch_ind = paddle.full(
shape=[1, index.shape[1], 1], fill_value=i, dtype='int64')
batch_inds.append(batch_ind)
batch_inds = paddle.concat(batch_inds, axis=0)
index = paddle.concat(x=[batch_inds, index], axis=2)
# 1.tracking head loss: L1 loss
tracking = head_outs['tracking'].transpose([0, 2, 3, 1])
tracking_target = inputs['tracking']
bs, _, _, c = tracking.shape
tracking = tracking.reshape([bs, -1, c])
pos_tracking = paddle.gather_nd(tracking, index=index)
tracking_mask = paddle.cast(
paddle.expand_as(mask, pos_tracking), dtype=pos_tracking.dtype)
pos_num = tracking_mask.sum()
tracking_mask.stop_gradient = True
tracking_target.stop_gradient = True
tracking_loss = F.l1_loss(
pos_tracking * tracking_mask,
tracking_target * tracking_mask,
reduction='sum')
tracking_loss = tracking_loss / (pos_num + 1e-4)
# 2.ltrb_amodal head loss(optinal): L1 loss
if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
ltrb_amodal = head_outs['ltrb_amodal'].transpose([0, 2, 3, 1])
ltrb_amodal_target = inputs['ltrb_amodal']
bs, _, _, c = ltrb_amodal.shape
ltrb_amodal = ltrb_amodal.reshape([bs, -1, c])
pos_ltrb_amodal = paddle.gather_nd(ltrb_amodal, index=index)
ltrb_amodal_mask = paddle.cast(
paddle.expand_as(mask, pos_ltrb_amodal),
dtype=pos_ltrb_amodal.dtype)
pos_num = ltrb_amodal_mask.sum()
ltrb_amodal_mask.stop_gradient = True
ltrb_amodal_target.stop_gradient = True
ltrb_amodal_loss = F.l1_loss(
pos_ltrb_amodal * ltrb_amodal_mask,
ltrb_amodal_target * ltrb_amodal_mask,
reduction='sum')
ltrb_amodal_loss = ltrb_amodal_loss / (pos_num + 1e-4)
losses = {'tracking_loss': tracking_loss, }
plugin_loss = weights['tracking'] * tracking_loss
if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
losses.update({'ltrb_amodal_loss': ltrb_amodal_loss})
plugin_loss += weights['ltrb_amodal'] * ltrb_amodal_loss
losses.update({'plugin_loss': plugin_loss})
return losses
def generic_decode(self, head_outs, bboxes, bbox_inds, topk_ys, topk_xs):
topk_ys = paddle.floor(topk_ys) # note: More accurate
topk_xs = paddle.floor(topk_xs)
cts = paddle.concat([topk_xs, topk_ys], 1)
ret = {'bboxes': bboxes, 'cts': cts}
regression_heads = ['tracking'] # todo: add more tasks
for head in regression_heads:
if head in head_outs:
ret[head] = _tranpose_and_gather_feat(head_outs[head],
bbox_inds)
if 'ltrb_amodal' in head_outs:
ltrb_amodal = head_outs['ltrb_amodal']
ltrb_amodal = _tranpose_and_gather_feat(ltrb_amodal, bbox_inds)
bboxes_amodal = paddle.concat(
[
topk_xs * 1.0 + ltrb_amodal[..., 0:1],
topk_ys * 1.0 + ltrb_amodal[..., 1:2],
topk_xs * 1.0 + ltrb_amodal[..., 2:3],
topk_ys * 1.0 + ltrb_amodal[..., 3:4]
],
axis=1)
ret['bboxes'] = paddle.concat([bboxes[:, 0:2], bboxes_amodal], 1)
# cls_id, score, x0, y0, x1, y1
return ret
def centertrack_post_process(self, dets, meta, out_thresh):
if not ('bboxes' in dets):
return [{}]
preds = []
c, s = meta['center'].numpy(), meta['scale'].numpy()
h, w = meta['out_height'].numpy(), meta['out_width'].numpy()
trans = get_affine_transform(
center=c[0],
input_size=s[0],
rot=0,
output_size=[w[0], h[0]],
shift=(0., 0.),
inv=True).astype(np.float32)
for i, dets_bbox in enumerate(dets['bboxes']):
if dets_bbox[1] < out_thresh:
break
item = {}
item['score'] = dets_bbox[1]
item['class'] = int(dets_bbox[0]) + 1
item['ct'] = transform_preds_with_trans(
dets['cts'][i].reshape([1, 2]), trans).reshape(2)
if 'tracking' in dets:
tracking = transform_preds_with_trans(
(dets['tracking'][i] + dets['cts'][i]).reshape([1, 2]),
trans).reshape(2)
item['tracking'] = tracking - item['ct']
if 'bboxes' in dets:
bbox = transform_preds_with_trans(
dets_bbox[2:6].reshape([2, 2]), trans).reshape(4)
item['bbox'] = bbox
preds.append(item)
return preds
def transform_preds_with_trans(coords, trans):
target_coords = np.ones((coords.shape[0], 3), np.float32)
target_coords[:, :2] = coords
target_coords = np.dot(trans, target_coords.transpose()).transpose()
return target_coords[:, :2]
def _tranpose_and_gather_feat(feat, bbox_inds):
feat = feat.transpose([0, 2, 3, 1])
feat = feat.reshape([-1, feat.shape[3]])
feat = paddle.gather(feat, bbox_inds)
return feat