Files
fcb_photo_review/paddle_detection/deploy/cpp/src/trajectory.cc
2024-08-27 14:42:45 +08:00

585 lines
17 KiB
C++

// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The code is based on:
// https://github.com/CnybTseng/JDE/blob/master/platforms/common/trajectory.cpp
// Ths copyright of CnybTseng/JDE is as follows:
// MIT License
#include <algorithm>
#include "include/trajectory.h"
namespace PaddleDetection {
void TKalmanFilter::init(const cv::Mat &measurement)
{
measurement.copyTo(statePost(cv::Rect(0, 0, 1, 4)));
statePost(cv::Rect(0, 4, 1, 4)).setTo(0);
statePost.copyTo(statePre);
float varpos = 2 * std_weight_position * (*measurement.ptr<float>(3));
varpos *= varpos;
float varvel = 10 * std_weight_velocity * (*measurement.ptr<float>(3));
varvel *= varvel;
errorCovPost.setTo(0);
*errorCovPost.ptr<float>(0, 0) = varpos;
*errorCovPost.ptr<float>(1, 1) = varpos;
*errorCovPost.ptr<float>(2, 2) = 1e-4f;
*errorCovPost.ptr<float>(3, 3) = varpos;
*errorCovPost.ptr<float>(4, 4) = varvel;
*errorCovPost.ptr<float>(5, 5) = varvel;
*errorCovPost.ptr<float>(6, 6) = 1e-10f;
*errorCovPost.ptr<float>(7, 7) = varvel;
errorCovPost.copyTo(errorCovPre);
}
const cv::Mat &TKalmanFilter::predict()
{
float varpos = std_weight_position * (*statePre.ptr<float>(3));
varpos *= varpos;
float varvel = std_weight_velocity * (*statePre.ptr<float>(3));
varvel *= varvel;
processNoiseCov.setTo(0);
*processNoiseCov.ptr<float>(0, 0) = varpos;
*processNoiseCov.ptr<float>(1, 1) = varpos;
*processNoiseCov.ptr<float>(2, 2) = 1e-4f;
*processNoiseCov.ptr<float>(3, 3) = varpos;
*processNoiseCov.ptr<float>(4, 4) = varvel;
*processNoiseCov.ptr<float>(5, 5) = varvel;
*processNoiseCov.ptr<float>(6, 6) = 1e-10f;
*processNoiseCov.ptr<float>(7, 7) = varvel;
return cv::KalmanFilter::predict();
}
const cv::Mat &TKalmanFilter::correct(const cv::Mat &measurement)
{
float varpos = std_weight_position * (*measurement.ptr<float>(3));
varpos *= varpos;
measurementNoiseCov.setTo(0);
*measurementNoiseCov.ptr<float>(0, 0) = varpos;
*measurementNoiseCov.ptr<float>(1, 1) = varpos;
*measurementNoiseCov.ptr<float>(2, 2) = 1e-2f;
*measurementNoiseCov.ptr<float>(3, 3) = varpos;
return cv::KalmanFilter::correct(measurement);
}
void TKalmanFilter::project(cv::Mat &mean, cv::Mat &covariance) const
{
float varpos = std_weight_position * (*statePost.ptr<float>(3));
varpos *= varpos;
cv::Mat measurementNoiseCov_ = cv::Mat::eye(4, 4, CV_32F);
*measurementNoiseCov_.ptr<float>(0, 0) = varpos;
*measurementNoiseCov_.ptr<float>(1, 1) = varpos;
*measurementNoiseCov_.ptr<float>(2, 2) = 1e-2f;
*measurementNoiseCov_.ptr<float>(3, 3) = varpos;
mean = measurementMatrix * statePost;
cv::Mat temp = measurementMatrix * errorCovPost;
gemm(temp, measurementMatrix, 1, measurementNoiseCov_, 1, covariance, cv::GEMM_2_T);
}
int Trajectory::count = 0;
const cv::Mat &Trajectory::predict(void)
{
if (state != Tracked)
*cv::KalmanFilter::statePost.ptr<float>(7) = 0;
return TKalmanFilter::predict();
}
void Trajectory::update(Trajectory &traj, int timestamp_, bool update_embedding_)
{
timestamp = timestamp_;
++length;
ltrb = traj.ltrb;
xyah = traj.xyah;
TKalmanFilter::correct(cv::Mat(traj.xyah));
state = Tracked;
is_activated = true;
score = traj.score;
if (update_embedding_)
update_embedding(traj.current_embedding);
}
void Trajectory::activate(int timestamp_)
{
id = next_id();
TKalmanFilter::init(cv::Mat(xyah));
length = 0;
state = Tracked;
if (timestamp_ == 1) {
is_activated = true;
}
timestamp = timestamp_;
starttime = timestamp_;
}
void Trajectory::reactivate(Trajectory &traj, int timestamp_, bool newid)
{
TKalmanFilter::correct(cv::Mat(traj.xyah));
update_embedding(traj.current_embedding);
length = 0;
state = Tracked;
is_activated = true;
timestamp = timestamp_;
if (newid)
id = next_id();
}
void Trajectory::update_embedding(const cv::Mat &embedding)
{
current_embedding = embedding / cv::norm(embedding);
if (smooth_embedding.empty())
{
smooth_embedding = current_embedding;
}
else
{
smooth_embedding = eta * smooth_embedding + (1 - eta) * current_embedding;
}
smooth_embedding = smooth_embedding / cv::norm(smooth_embedding);
}
TrajectoryPool operator+(const TrajectoryPool &a, const TrajectoryPool &b)
{
TrajectoryPool sum;
sum.insert(sum.end(), a.begin(), a.end());
std::vector<int> ids(a.size());
for (size_t i = 0; i < a.size(); ++i)
ids[i] = a[i].id;
for (size_t i = 0; i < b.size(); ++i)
{
std::vector<int>::iterator iter = find(ids.begin(), ids.end(), b[i].id);
if (iter == ids.end())
{
sum.push_back(b[i]);
ids.push_back(b[i].id);
}
}
return sum;
}
TrajectoryPool operator+(const TrajectoryPool &a, const TrajectoryPtrPool &b)
{
TrajectoryPool sum;
sum.insert(sum.end(), a.begin(), a.end());
std::vector<int> ids(a.size());
for (size_t i = 0; i < a.size(); ++i)
ids[i] = a[i].id;
for (size_t i = 0; i < b.size(); ++i)
{
std::vector<int>::iterator iter = find(ids.begin(), ids.end(), b[i]->id);
if (iter == ids.end())
{
sum.push_back(*b[i]);
ids.push_back(b[i]->id);
}
}
return sum;
}
TrajectoryPool &operator+=(TrajectoryPool &a, const TrajectoryPtrPool &b)
{
std::vector<int> ids(a.size());
for (size_t i = 0; i < a.size(); ++i)
ids[i] = a[i].id;
for (size_t i = 0; i < b.size(); ++i)
{
if (b[i]->smooth_embedding.empty())
continue;
std::vector<int>::iterator iter = find(ids.begin(), ids.end(), b[i]->id);
if (iter == ids.end())
{
a.push_back(*b[i]);
ids.push_back(b[i]->id);
}
}
return a;
}
TrajectoryPool operator-(const TrajectoryPool &a, const TrajectoryPool &b)
{
TrajectoryPool dif;
std::vector<int> ids(b.size());
for (size_t i = 0; i < b.size(); ++i)
ids[i] = b[i].id;
for (size_t i = 0; i < a.size(); ++i)
{
std::vector<int>::iterator iter = find(ids.begin(), ids.end(), a[i].id);
if (iter == ids.end())
dif.push_back(a[i]);
}
return dif;
}
TrajectoryPool &operator-=(TrajectoryPool &a, const TrajectoryPool &b)
{
std::vector<int> ids(b.size());
for (size_t i = 0; i < b.size(); ++i)
ids[i] = b[i].id;
TrajectoryPoolIterator piter;
for (piter = a.begin(); piter != a.end(); )
{
std::vector<int>::iterator iter = find(ids.begin(), ids.end(), piter->id);
if (iter == ids.end())
++piter;
else
piter = a.erase(piter);
}
return a;
}
TrajectoryPtrPool operator+(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b)
{
TrajectoryPtrPool sum;
sum.insert(sum.end(), a.begin(), a.end());
std::vector<int> ids(a.size());
for (size_t i = 0; i < a.size(); ++i)
ids[i] = a[i]->id;
for (size_t i = 0; i < b.size(); ++i)
{
std::vector<int>::iterator iter = find(ids.begin(), ids.end(), b[i]->id);
if (iter == ids.end())
{
sum.push_back(b[i]);
ids.push_back(b[i]->id);
}
}
return sum;
}
TrajectoryPtrPool operator+(const TrajectoryPtrPool &a, TrajectoryPool &b)
{
TrajectoryPtrPool sum;
sum.insert(sum.end(), a.begin(), a.end());
std::vector<int> ids(a.size());
for (size_t i = 0; i < a.size(); ++i)
ids[i] = a[i]->id;
for (size_t i = 0; i < b.size(); ++i)
{
std::vector<int>::iterator iter = find(ids.begin(), ids.end(), b[i].id);
if (iter == ids.end())
{
sum.push_back(&b[i]);
ids.push_back(b[i].id);
}
}
return sum;
}
TrajectoryPtrPool operator-(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b)
{
TrajectoryPtrPool dif;
std::vector<int> ids(b.size());
for (size_t i = 0; i < b.size(); ++i)
ids[i] = b[i]->id;
for (size_t i = 0; i < a.size(); ++i)
{
std::vector<int>::iterator iter = find(ids.begin(), ids.end(), a[i]->id);
if (iter == ids.end())
dif.push_back(a[i]);
}
return dif;
}
cv::Mat embedding_distance(const TrajectoryPool &a, const TrajectoryPool &b)
{
cv::Mat dists(a.size(), b.size(), CV_32F);
for (size_t i = 0; i < a.size(); ++i)
{
float *distsi = dists.ptr<float>(i);
for (size_t j = 0; j < b.size(); ++j)
{
cv::Mat u = a[i].smooth_embedding;
cv::Mat v = b[j].smooth_embedding;
double uv = u.dot(v);
double uu = u.dot(u);
double vv = v.dot(v);
double dist = std::abs(1. - uv / std::sqrt(uu * vv));
//double dist = cv::norm(a[i].smooth_embedding, b[j].smooth_embedding, cv::NORM_L2);
distsi[j] = static_cast<float>(std::max(std::min(dist, 2.), 0.));
}
}
return dists;
}
cv::Mat embedding_distance(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b)
{
cv::Mat dists(a.size(), b.size(), CV_32F);
for (size_t i = 0; i < a.size(); ++i)
{
float *distsi = dists.ptr<float>(i);
for (size_t j = 0; j < b.size(); ++j)
{
//double dist = cv::norm(a[i]->smooth_embedding, b[j]->smooth_embedding, cv::NORM_L2);
//distsi[j] = static_cast<float>(dist);
cv::Mat u = a[i]->smooth_embedding;
cv::Mat v = b[j]->smooth_embedding;
double uv = u.dot(v);
double uu = u.dot(u);
double vv = v.dot(v);
double dist = std::abs(1. - uv / std::sqrt(uu * vv));
distsi[j] = static_cast<float>(std::max(std::min(dist, 2.), 0.));
}
}
return dists;
}
cv::Mat embedding_distance(const TrajectoryPtrPool &a, const TrajectoryPool &b)
{
cv::Mat dists(a.size(), b.size(), CV_32F);
for (size_t i = 0; i < a.size(); ++i)
{
float *distsi = dists.ptr<float>(i);
for (size_t j = 0; j < b.size(); ++j)
{
//double dist = cv::norm(a[i]->smooth_embedding, b[j].smooth_embedding, cv::NORM_L2);
//distsi[j] = static_cast<float>(dist);
cv::Mat u = a[i]->smooth_embedding;
cv::Mat v = b[j].smooth_embedding;
double uv = u.dot(v);
double uu = u.dot(u);
double vv = v.dot(v);
double dist = std::abs(1. - uv / std::sqrt(uu * vv));
distsi[j] = static_cast<float>(std::max(std::min(dist, 2.), 0.));
}
}
return dists;
}
cv::Mat mahalanobis_distance(const TrajectoryPool &a, const TrajectoryPool &b)
{
std::vector<cv::Mat> means(a.size());
std::vector<cv::Mat> icovariances(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
cv::Mat covariance;
a[i].project(means[i], covariance);
cv::invert(covariance, icovariances[i]);
}
cv::Mat dists(a.size(), b.size(), CV_32F);
for (size_t i = 0; i < a.size(); ++i)
{
float *distsi = dists.ptr<float>(i);
for (size_t j = 0; j < b.size(); ++j)
{
const cv::Mat x(b[j].xyah);
float dist = static_cast<float>(cv::Mahalanobis(x, means[i], icovariances[i]));
distsi[j] = dist * dist;
}
}
return dists;
}
cv::Mat mahalanobis_distance(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b)
{
std::vector<cv::Mat> means(a.size());
std::vector<cv::Mat> icovariances(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
cv::Mat covariance;
a[i]->project(means[i], covariance);
cv::invert(covariance, icovariances[i]);
}
cv::Mat dists(a.size(), b.size(), CV_32F);
for (size_t i = 0; i < a.size(); ++i)
{
float *distsi = dists.ptr<float>(i);
for (size_t j = 0; j < b.size(); ++j)
{
const cv::Mat x(b[j]->xyah);
float dist = static_cast<float>(cv::Mahalanobis(x, means[i], icovariances[i]));
distsi[j] = dist * dist;
}
}
return dists;
}
cv::Mat mahalanobis_distance(const TrajectoryPtrPool &a, const TrajectoryPool &b)
{
std::vector<cv::Mat> means(a.size());
std::vector<cv::Mat> icovariances(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
cv::Mat covariance;
a[i]->project(means[i], covariance);
cv::invert(covariance, icovariances[i]);
}
cv::Mat dists(a.size(), b.size(), CV_32F);
for (size_t i = 0; i < a.size(); ++i)
{
float *distsi = dists.ptr<float>(i);
for (size_t j = 0; j < b.size(); ++j)
{
const cv::Mat x(b[j].xyah);
float dist = static_cast<float>(cv::Mahalanobis(x, means[i], icovariances[i]));
distsi[j] = dist * dist;
}
}
return dists;
}
static inline float calc_inter_area(const cv::Vec4f &a, const cv::Vec4f &b)
{
if (a[2] < b[0] || a[0] > b[2] || a[3] < b[1] || a[1] > b[3])
return 0.f;
float w = std::min(a[2], b[2]) - std::max(a[0], b[0]);
float h = std::min(a[3], b[3]) - std::max(a[1], b[1]);
return w * h;
}
cv::Mat iou_distance(const TrajectoryPool &a, const TrajectoryPool &b)
{
std::vector<float> areaa(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
float w = a[i].ltrb[2] - a[i].ltrb[0];
float h = a[i].ltrb[3] - a[i].ltrb[1];
areaa[i] = w * h;
}
std::vector<float> areab(b.size());
for (size_t j = 0; j < b.size(); ++j)
{
float w = b[j].ltrb[2] - b[j].ltrb[0];
float h = b[j].ltrb[3] - b[j].ltrb[1];
areab[j] = w * h;
}
cv::Mat dists(a.size(), b.size(), CV_32F);
for (size_t i = 0; i < a.size(); ++i)
{
const cv::Vec4f &boxa = a[i].ltrb;
float *distsi = dists.ptr<float>(i);
for (size_t j = 0; j < b.size(); ++j)
{
const cv::Vec4f &boxb = b[j].ltrb;
float inters = calc_inter_area(boxa, boxb);
distsi[j] = 1.f - inters / (areaa[i] + areab[j] - inters);
}
}
return dists;
}
cv::Mat iou_distance(const TrajectoryPtrPool &a, const TrajectoryPtrPool &b)
{
std::vector<float> areaa(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
float w = a[i]->ltrb[2] - a[i]->ltrb[0];
float h = a[i]->ltrb[3] - a[i]->ltrb[1];
areaa[i] = w * h;
}
std::vector<float> areab(b.size());
for (size_t j = 0; j < b.size(); ++j)
{
float w = b[j]->ltrb[2] - b[j]->ltrb[0];
float h = b[j]->ltrb[3] - b[j]->ltrb[1];
areab[j] = w * h;
}
cv::Mat dists(a.size(), b.size(), CV_32F);
for (size_t i = 0; i < a.size(); ++i)
{
const cv::Vec4f &boxa = a[i]->ltrb;
float *distsi = dists.ptr<float>(i);
for (size_t j = 0; j < b.size(); ++j)
{
const cv::Vec4f &boxb = b[j]->ltrb;
float inters = calc_inter_area(boxa, boxb);
distsi[j] = 1.f - inters / (areaa[i] + areab[j] - inters);
}
}
return dists;
}
cv::Mat iou_distance(const TrajectoryPtrPool &a, const TrajectoryPool &b)
{
std::vector<float> areaa(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
float w = a[i]->ltrb[2] - a[i]->ltrb[0];
float h = a[i]->ltrb[3] - a[i]->ltrb[1];
areaa[i] = w * h;
}
std::vector<float> areab(b.size());
for (size_t j = 0; j < b.size(); ++j)
{
float w = b[j].ltrb[2] - b[j].ltrb[0];
float h = b[j].ltrb[3] - b[j].ltrb[1];
areab[j] = w * h;
}
cv::Mat dists(a.size(), b.size(), CV_32F);
for (size_t i = 0; i < a.size(); ++i)
{
const cv::Vec4f &boxa = a[i]->ltrb;
float *distsi = dists.ptr<float>(i);
for (size_t j = 0; j < b.size(); ++j)
{
const cv::Vec4f &boxb = b[j].ltrb;
float inters = calc_inter_area(boxa, boxb);
distsi[j] = 1.f - inters / (areaa[i] + areab[j] - inters);
}
}
return dists;
}
} // namespace PaddleDetection