434 lines
16 KiB
Python
434 lines
16 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import time
|
|
import yaml
|
|
import glob
|
|
from functools import reduce
|
|
|
|
from PIL import Image
|
|
import cv2
|
|
import math
|
|
import numpy as np
|
|
import paddle
|
|
|
|
import sys
|
|
# add deploy path of PaddleDetection to sys.path
|
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
|
|
sys.path.insert(0, parent_path)
|
|
|
|
from preprocess import preprocess, NormalizeImage, Permute
|
|
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
|
|
from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
|
|
from visualize import visualize_pose
|
|
from paddle.inference import Config
|
|
from paddle.inference import create_predictor
|
|
from utils import argsparser, Timer, get_current_memory_mb
|
|
from benchmark_utils import PaddleInferBenchmark
|
|
from infer import Detector, get_test_images, print_arguments
|
|
|
|
# Global dictionary
|
|
KEYPOINT_SUPPORT_MODELS = {
|
|
'HigherHRNet': 'keypoint_bottomup',
|
|
'HRNet': 'keypoint_topdown'
|
|
}
|
|
|
|
|
|
class KeyPointDetector(Detector):
|
|
"""
|
|
Args:
|
|
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
|
|
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
|
|
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
|
|
batch_size (int): size of pre batch in inference
|
|
trt_min_shape (int): min shape for dynamic shape in trt
|
|
trt_max_shape (int): max shape for dynamic shape in trt
|
|
trt_opt_shape (int): opt shape for dynamic shape in trt
|
|
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
|
|
calibration, trt_calib_mode need to set True
|
|
cpu_threads (int): cpu threads
|
|
enable_mkldnn (bool): whether to open MKLDNN
|
|
use_dark(bool): whether to use postprocess in DarkPose
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_dir,
|
|
device='CPU',
|
|
run_mode='paddle',
|
|
batch_size=1,
|
|
trt_min_shape=1,
|
|
trt_max_shape=1280,
|
|
trt_opt_shape=640,
|
|
trt_calib_mode=False,
|
|
cpu_threads=1,
|
|
enable_mkldnn=False,
|
|
output_dir='output',
|
|
threshold=0.5,
|
|
use_dark=True,
|
|
use_fd_format=False):
|
|
super(KeyPointDetector, self).__init__(
|
|
model_dir=model_dir,
|
|
device=device,
|
|
run_mode=run_mode,
|
|
batch_size=batch_size,
|
|
trt_min_shape=trt_min_shape,
|
|
trt_max_shape=trt_max_shape,
|
|
trt_opt_shape=trt_opt_shape,
|
|
trt_calib_mode=trt_calib_mode,
|
|
cpu_threads=cpu_threads,
|
|
enable_mkldnn=enable_mkldnn,
|
|
output_dir=output_dir,
|
|
threshold=threshold,
|
|
use_fd_format=use_fd_format)
|
|
self.use_dark = use_dark
|
|
|
|
def set_config(self, model_dir, use_fd_format):
|
|
return PredictConfig_KeyPoint(model_dir, use_fd_format=use_fd_format)
|
|
|
|
def get_person_from_rect(self, image, results):
|
|
# crop the person result from image
|
|
self.det_times.preprocess_time_s.start()
|
|
valid_rects = results['boxes']
|
|
rect_images = []
|
|
new_rects = []
|
|
org_rects = []
|
|
for rect in valid_rects:
|
|
rect_image, new_rect, org_rect = expand_crop(image, rect)
|
|
if rect_image is None or rect_image.size == 0:
|
|
continue
|
|
rect_images.append(rect_image)
|
|
new_rects.append(new_rect)
|
|
org_rects.append(org_rect)
|
|
self.det_times.preprocess_time_s.end()
|
|
return rect_images, new_rects, org_rects
|
|
|
|
def postprocess(self, inputs, result):
|
|
np_heatmap = result['heatmap']
|
|
np_masks = result['masks']
|
|
# postprocess output of predictor
|
|
if KEYPOINT_SUPPORT_MODELS[
|
|
self.pred_config.arch] == 'keypoint_bottomup':
|
|
results = {}
|
|
h, w = inputs['im_shape'][0]
|
|
preds = [np_heatmap]
|
|
if np_masks is not None:
|
|
preds += np_masks
|
|
preds += [h, w]
|
|
keypoint_postprocess = HrHRNetPostProcess()
|
|
kpts, scores = keypoint_postprocess(*preds)
|
|
results['keypoint'] = kpts
|
|
results['score'] = scores
|
|
return results
|
|
elif KEYPOINT_SUPPORT_MODELS[
|
|
self.pred_config.arch] == 'keypoint_topdown':
|
|
results = {}
|
|
imshape = inputs['im_shape'][:, ::-1]
|
|
center = np.round(imshape / 2.)
|
|
scale = imshape / 200.
|
|
keypoint_postprocess = HRNetPostProcess(use_dark=self.use_dark)
|
|
kpts, scores = keypoint_postprocess(np_heatmap, center, scale)
|
|
results['keypoint'] = kpts
|
|
results['score'] = scores
|
|
return results
|
|
else:
|
|
raise ValueError("Unsupported arch: {}, expect {}".format(
|
|
self.pred_config.arch, KEYPOINT_SUPPORT_MODELS))
|
|
|
|
def predict(self, repeats=1):
|
|
'''
|
|
Args:
|
|
repeats (int): repeat number for prediction
|
|
Returns:
|
|
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
|
|
matix element:[class, score, x_min, y_min, x_max, y_max]
|
|
MaskRCNN's results include 'masks': np.ndarray:
|
|
shape: [N, im_h, im_w]
|
|
'''
|
|
# model prediction
|
|
np_heatmap, np_masks = None, None
|
|
for i in range(repeats):
|
|
self.predictor.run()
|
|
output_names = self.predictor.get_output_names()
|
|
heatmap_tensor = self.predictor.get_output_handle(output_names[0])
|
|
np_heatmap = heatmap_tensor.copy_to_cpu()
|
|
if self.pred_config.tagmap:
|
|
masks_tensor = self.predictor.get_output_handle(output_names[1])
|
|
heat_k = self.predictor.get_output_handle(output_names[2])
|
|
inds_k = self.predictor.get_output_handle(output_names[3])
|
|
np_masks = [
|
|
masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
|
|
inds_k.copy_to_cpu()
|
|
]
|
|
result = dict(heatmap=np_heatmap, masks=np_masks)
|
|
return result
|
|
|
|
def predict_image(self,
|
|
image_list,
|
|
run_benchmark=False,
|
|
repeats=1,
|
|
visual=True):
|
|
results = []
|
|
batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
|
|
for i in range(batch_loop_cnt):
|
|
start_index = i * self.batch_size
|
|
end_index = min((i + 1) * self.batch_size, len(image_list))
|
|
batch_image_list = image_list[start_index:end_index]
|
|
if run_benchmark:
|
|
# preprocess
|
|
inputs = self.preprocess(batch_image_list) # warmup
|
|
self.det_times.preprocess_time_s.start()
|
|
inputs = self.preprocess(batch_image_list)
|
|
self.det_times.preprocess_time_s.end()
|
|
|
|
# model prediction
|
|
result_warmup = self.predict(repeats=repeats) # warmup
|
|
self.det_times.inference_time_s.start()
|
|
result = self.predict(repeats=repeats)
|
|
self.det_times.inference_time_s.end(repeats=repeats)
|
|
|
|
# postprocess
|
|
result_warmup = self.postprocess(inputs, result) # warmup
|
|
self.det_times.postprocess_time_s.start()
|
|
result = self.postprocess(inputs, result)
|
|
self.det_times.postprocess_time_s.end()
|
|
self.det_times.img_num += len(batch_image_list)
|
|
|
|
cm, gm, gu = get_current_memory_mb()
|
|
self.cpu_mem += cm
|
|
self.gpu_mem += gm
|
|
self.gpu_util += gu
|
|
|
|
else:
|
|
# preprocess
|
|
self.det_times.preprocess_time_s.start()
|
|
inputs = self.preprocess(batch_image_list)
|
|
self.det_times.preprocess_time_s.end()
|
|
|
|
# model prediction
|
|
self.det_times.inference_time_s.start()
|
|
result = self.predict()
|
|
self.det_times.inference_time_s.end()
|
|
|
|
# postprocess
|
|
self.det_times.postprocess_time_s.start()
|
|
result = self.postprocess(inputs, result)
|
|
self.det_times.postprocess_time_s.end()
|
|
self.det_times.img_num += len(batch_image_list)
|
|
|
|
if visual:
|
|
if not os.path.exists(self.output_dir):
|
|
os.makedirs(self.output_dir)
|
|
visualize(
|
|
batch_image_list,
|
|
result,
|
|
visual_thresh=self.threshold,
|
|
save_dir=self.output_dir)
|
|
|
|
results.append(result)
|
|
if visual:
|
|
print('Test iter {}'.format(i))
|
|
results = self.merge_batch_result(results)
|
|
return results
|
|
|
|
def predict_video(self, video_file, camera_id):
|
|
video_name = 'output.mp4'
|
|
if camera_id != -1:
|
|
capture = cv2.VideoCapture(camera_id)
|
|
else:
|
|
capture = cv2.VideoCapture(video_file)
|
|
video_name = os.path.split(video_file)[-1]
|
|
# Get Video info : resolution, fps, frame count
|
|
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
fps = int(capture.get(cv2.CAP_PROP_FPS))
|
|
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
print("fps: %d, frame_count: %d" % (fps, frame_count))
|
|
|
|
if not os.path.exists(self.output_dir):
|
|
os.makedirs(self.output_dir)
|
|
out_path = os.path.join(self.output_dir, video_name)
|
|
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
|
|
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
|
|
index = 1
|
|
while (1):
|
|
ret, frame = capture.read()
|
|
if not ret:
|
|
break
|
|
print('detect frame: %d' % (index))
|
|
index += 1
|
|
results = self.predict_image([frame[:, :, ::-1]], visual=False)
|
|
im_results = {}
|
|
im_results['keypoint'] = [results['keypoint'], results['score']]
|
|
im = visualize_pose(
|
|
frame, im_results, visual_thresh=self.threshold, returnimg=True)
|
|
writer.write(im)
|
|
if camera_id != -1:
|
|
cv2.imshow('Mask Detection', im)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
writer.release()
|
|
|
|
|
|
def create_inputs(imgs, im_info):
|
|
"""generate input for different model type
|
|
Args:
|
|
imgs (list(numpy)): list of image (np.ndarray)
|
|
im_info (list(dict)): list of image info
|
|
Returns:
|
|
inputs (dict): input of model
|
|
"""
|
|
inputs = {}
|
|
inputs['image'] = np.stack(imgs, axis=0).astype('float32')
|
|
im_shape = []
|
|
for e in im_info:
|
|
im_shape.append(np.array((e['im_shape'])).astype('float32'))
|
|
inputs['im_shape'] = np.stack(im_shape, axis=0)
|
|
return inputs
|
|
|
|
|
|
class PredictConfig_KeyPoint():
|
|
"""set config of preprocess, postprocess and visualize
|
|
Args:
|
|
model_dir (str): root path of model.yml
|
|
"""
|
|
|
|
def __init__(self, model_dir, use_fd_format=False):
|
|
# parsing Yaml config for Preprocess
|
|
fd_deploy_file = os.path.join(model_dir, 'inference.yml')
|
|
ppdet_deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
|
|
if use_fd_format:
|
|
if not os.path.exists(fd_deploy_file) and os.path.exists(
|
|
ppdet_deploy_file):
|
|
raise RuntimeError(
|
|
"Non-FD format model detected. Please set `use_fd_format` to False."
|
|
)
|
|
deploy_file = fd_deploy_file
|
|
else:
|
|
if not os.path.exists(ppdet_deploy_file) and os.path.exists(
|
|
fd_deploy_file):
|
|
raise RuntimeError(
|
|
"FD format model detected. Please set `use_fd_format` to False."
|
|
)
|
|
deploy_file = ppdet_deploy_file
|
|
with open(deploy_file) as f:
|
|
yml_conf = yaml.safe_load(f)
|
|
self.check_model(yml_conf)
|
|
self.arch = yml_conf['arch']
|
|
self.archcls = KEYPOINT_SUPPORT_MODELS[yml_conf['arch']]
|
|
self.preprocess_infos = yml_conf['Preprocess']
|
|
self.min_subgraph_size = yml_conf['min_subgraph_size']
|
|
self.labels = yml_conf['label_list']
|
|
self.tagmap = False
|
|
self.use_dynamic_shape = yml_conf['use_dynamic_shape']
|
|
if 'keypoint_bottomup' == self.archcls:
|
|
self.tagmap = True
|
|
self.print_config()
|
|
|
|
def check_model(self, yml_conf):
|
|
"""
|
|
Raises:
|
|
ValueError: loaded model not in supported model type
|
|
"""
|
|
for support_model in KEYPOINT_SUPPORT_MODELS:
|
|
if support_model in yml_conf['arch']:
|
|
return True
|
|
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
|
|
'arch'], KEYPOINT_SUPPORT_MODELS))
|
|
|
|
def print_config(self):
|
|
print('----------- Model Configuration -----------')
|
|
print('%s: %s' % ('Model Arch', self.arch))
|
|
print('%s: ' % ('Transform Order'))
|
|
for op_info in self.preprocess_infos:
|
|
print('--%s: %s' % ('transform op', op_info['type']))
|
|
print('--------------------------------------------')
|
|
|
|
|
|
def visualize(image_list, results, visual_thresh=0.6, save_dir='output'):
|
|
im_results = {}
|
|
for i, image_file in enumerate(image_list):
|
|
skeletons = results['keypoint']
|
|
scores = results['score']
|
|
skeleton = skeletons[i:i + 1]
|
|
score = scores[i:i + 1]
|
|
im_results['keypoint'] = [skeleton, score]
|
|
visualize_pose(
|
|
image_file,
|
|
im_results,
|
|
visual_thresh=visual_thresh,
|
|
save_dir=save_dir)
|
|
|
|
|
|
def main():
|
|
detector = KeyPointDetector(
|
|
FLAGS.model_dir,
|
|
device=FLAGS.device,
|
|
run_mode=FLAGS.run_mode,
|
|
batch_size=FLAGS.batch_size,
|
|
trt_min_shape=FLAGS.trt_min_shape,
|
|
trt_max_shape=FLAGS.trt_max_shape,
|
|
trt_opt_shape=FLAGS.trt_opt_shape,
|
|
trt_calib_mode=FLAGS.trt_calib_mode,
|
|
cpu_threads=FLAGS.cpu_threads,
|
|
enable_mkldnn=FLAGS.enable_mkldnn,
|
|
threshold=FLAGS.threshold,
|
|
output_dir=FLAGS.output_dir,
|
|
use_dark=FLAGS.use_dark,
|
|
use_fd_format=FLAGS.use_fd_format)
|
|
|
|
# predict from video file or camera video stream
|
|
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
|
|
detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
|
|
else:
|
|
# predict from image
|
|
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
|
|
detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
|
|
if not FLAGS.run_benchmark:
|
|
detector.det_times.info(average=True)
|
|
else:
|
|
mems = {
|
|
'cpu_rss_mb': detector.cpu_mem / len(img_list),
|
|
'gpu_rss_mb': detector.gpu_mem / len(img_list),
|
|
'gpu_util': detector.gpu_util * 100 / len(img_list)
|
|
}
|
|
perf_info = detector.det_times.report(average=True)
|
|
model_dir = FLAGS.model_dir
|
|
mode = FLAGS.run_mode
|
|
model_info = {
|
|
'model_name': model_dir.strip('/').split('/')[-1],
|
|
'precision': mode.split('_')[-1]
|
|
}
|
|
data_info = {
|
|
'batch_size': 1,
|
|
'shape': "dynamic_shape",
|
|
'data_num': perf_info['img_num']
|
|
}
|
|
det_log = PaddleInferBenchmark(detector.config, model_info,
|
|
data_info, perf_info, mems)
|
|
det_log('KeyPoint')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
paddle.enable_static()
|
|
parser = argsparser()
|
|
FLAGS = parser.parse_args()
|
|
print_arguments(FLAGS)
|
|
FLAGS.device = FLAGS.device.upper()
|
|
assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
|
|
], "device should be CPU, GPU, XPU or NPU"
|
|
assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
|
|
|
|
main()
|