Files
fcb_photo_review/paddle_detection/deploy/serving/python/web_service.py
2024-08-27 14:42:45 +08:00

262 lines
9.6 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from paddle_serving_server.web_service import WebService, Op
from paddle_serving_server.proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import os
import numpy as np
import base64
from PIL import Image
import io
from preprocess_ops import Compose
from postprocess_ops import HRNetPostProcess
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import yaml
# Global dictionary
SUPPORT_MODELS = {
'YOLO', 'PPYOLOE', 'RCNN', 'SSD', 'Face', 'FCOS', 'SOLOv2', 'TTFNet',
'S2ANet', 'JDE', 'FairMOT', 'DeepSORT', 'GFL', 'PicoDet', 'CenterNet',
'TOOD', 'RetinaNet', 'StrongBaseline', 'STGCN', 'YOLOX', 'HRNet'
}
GLOBAL_VAR = {}
class ArgsParser(ArgumentParser):
def __init__(self):
super(ArgsParser, self).__init__(
formatter_class=RawDescriptionHelpFormatter)
self.add_argument(
"-c",
"--config",
default="deploy/serving/python/config.yml",
help="configuration file to use")
self.add_argument(
"--model_dir",
type=str,
default=None,
help=("Directory include:'model.pdiparams', 'model.pdmodel', "
"'infer_cfg.yml', created by tools/export_model.py."),
required=True)
self.add_argument(
"-o", "--opt", nargs='+', help="set configuration options")
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
assert args.config is not None, \
"Please specify --config=configure_file_path."
args.service_config = self._parse_opt(args.opt, args.config)
args.model_config = PredictConfig(args.model_dir)
return args
def _parse_helper(self, v):
if v.isnumeric():
if "." in v:
v = float(v)
else:
v = int(v)
elif v == "True" or v == "False":
v = (v == "True")
return v
def _parse_opt(self, opts, conf_path):
f = open(conf_path)
config = yaml.load(f, Loader=yaml.Loader)
if not opts:
return config
for s in opts:
s = s.strip()
k, v = s.split('=')
v = self._parse_helper(v)
if "devices" in k:
v = str(v)
print(k, v, type(v))
cur = config
parent = cur
for kk in k.split("."):
if kk not in cur:
cur[kk] = {}
parent = cur
cur = cur[kk]
else:
parent = cur
cur = cur[kk]
parent[k.split(".")[-1]] = v
return config
class PredictConfig(object):
"""set config of preprocess, postprocess and visualize
Args:
model_dir (str): root path of infer_cfg.yml
"""
def __init__(self, model_dir):
# parsing Yaml config for Preprocess
deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
with open(deploy_file) as f:
yml_conf = yaml.safe_load(f)
self.check_model(yml_conf)
self.arch = yml_conf['arch']
self.preprocess_infos = yml_conf['Preprocess']
self.min_subgraph_size = yml_conf['min_subgraph_size']
self.label_list = yml_conf['label_list']
self.use_dynamic_shape = yml_conf['use_dynamic_shape']
self.draw_threshold = yml_conf.get("draw_threshold", 0.5)
self.mask = yml_conf.get("mask", False)
self.tracker = yml_conf.get("tracker", None)
self.nms = yml_conf.get("NMS", None)
self.fpn_stride = yml_conf.get("fpn_stride", None)
if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
print(
'The RCNN export model is used for ONNX and it only supports batch_size = 1'
)
self.print_config()
def check_model(self, yml_conf):
"""
Raises:
ValueError: loaded model not in supported model type
"""
for support_model in SUPPORT_MODELS:
if support_model in yml_conf['arch']:
return True
raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
'arch'], SUPPORT_MODELS))
def print_config(self):
print('----------- Model Configuration -----------')
print('%s: %s' % ('Model Arch', self.arch))
print('%s: ' % ('Transform Order'))
for op_info in self.preprocess_infos:
print('--%s: %s' % ('transform op', op_info['type']))
print('--------------------------------------------')
class DetectorOp(Op):
def init_op(self):
self.preprocess_pipeline = Compose(GLOBAL_VAR['preprocess_ops'])
def preprocess(self, input_dicts, data_id, log_id):
(_, input_dict), = input_dicts.items()
inputs = []
for key, data in input_dict.items():
data = base64.b64decode(data.encode('utf8'))
byte_stream = io.BytesIO(data)
img = Image.open(byte_stream).convert("RGB")
inputs.append(self.preprocess_pipeline(img))
inputs = self.collate_inputs(inputs)
return inputs, False, None, ""
def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
(_, input_dict), = input_dicts.items()
if GLOBAL_VAR['model_config'].arch in ["HRNet"]:
result = self.parse_keypoint_result(input_dict, fetch_dict)
else:
result = self.parse_detection_result(input_dict, fetch_dict)
return result, None, ""
def collate_inputs(self, inputs):
collate_inputs = {k: [] for k in inputs[0].keys()}
for info in inputs:
for k in collate_inputs.keys():
collate_inputs[k].append(info[k])
return {
k: np.stack(v)
for k, v in collate_inputs.items() if k in GLOBAL_VAR['feed_vars']
}
def parse_detection_result(self, input_dict, fetch_dict):
bboxes = fetch_dict[GLOBAL_VAR['fetch_vars'][0]]
bboxes_num = fetch_dict[GLOBAL_VAR['fetch_vars'][1]]
if GLOBAL_VAR['model_config'].mask:
masks = fetch_dict[GLOBAL_VAR['fetch_vars'][2]]
idx = 0
results = {}
for img_name, num in zip(input_dict.keys(), bboxes_num):
if num == 0:
results[img_name] = 'No object detected!'
else:
result = []
bbox = bboxes[idx:idx + num]
for line in bbox:
if line[0] > -1 and line[1] > GLOBAL_VAR[
'model_config'].draw_threshold:
result.append(
f"{int(line[0])} {line[1]} "
f"{line[2]} {line[3]} {line[4]} {line[5]}")
if len(result) == 0:
result = 'No object detected!'
results[img_name] = result
idx += num
return results
def parse_keypoint_result(self, input_dict, fetch_dict):
heatmap = fetch_dict["conv2d_441.tmp_1"]
keypoint_postprocess = HRNetPostProcess()
im_shape = []
for key, data in input_dict.items():
data = base64.b64decode(data.encode('utf8'))
byte_stream = io.BytesIO(data)
img = Image.open(byte_stream).convert("RGB")
im_shape.append([img.width, img.height])
im_shape = np.array(im_shape)
center = np.round(im_shape / 2.)
scale = im_shape / 200.
kpts, scores = keypoint_postprocess(heatmap, center, scale)
results = {"keypoint": kpts, "scores": scores}
return results
class DetectorService(WebService):
def get_pipeline_response(self, read_op):
return DetectorOp(name="ppdet", input_ops=[read_op])
def get_model_vars(model_dir, service_config):
serving_server_dir = os.path.join(model_dir, "serving_server")
# rewrite model_config
service_config['op']['ppdet']['local_service_conf'][
'model_config'] = serving_server_dir
serving_server_conf = os.path.join(serving_server_dir,
"serving_server_conf.prototxt")
with open(serving_server_conf, 'r') as f:
model_var = google.protobuf.text_format.Merge(
str(f.read()), m_config.GeneralModelConfig())
feed_vars = [var.name for var in model_var.feed_var]
fetch_vars = [var.name for var in model_var.fetch_var]
return feed_vars, fetch_vars
if __name__ == '__main__':
# load config and prepare the service
FLAGS = ArgsParser().parse_args()
feed_vars, fetch_vars = get_model_vars(FLAGS.model_dir,
FLAGS.service_config)
GLOBAL_VAR['feed_vars'] = feed_vars
GLOBAL_VAR['fetch_vars'] = fetch_vars
GLOBAL_VAR['preprocess_ops'] = FLAGS.model_config.preprocess_infos
GLOBAL_VAR['model_config'] = FLAGS.model_config
print(FLAGS)
# define the service
uci_service = DetectorService(name="ppdet")
uci_service.prepare_pipeline_config(yml_dict=FLAGS.service_config)
# start the service
uci_service.run_service()