Files
fcb_photo_review/paddle_detection/deploy/end2end_ppyoloe/cuda-python.py
2024-08-27 14:42:45 +08:00

162 lines
6.4 KiB
Python

import sys
import requests
import cv2
import random
import time
import numpy as np
import tensorrt as trt
from cuda import cudart
from pathlib import Path
from collections import OrderedDict, namedtuple
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, r, (dw, dh)
w = Path(sys.argv[1])
assert w.exists() and w.suffix in ('.engine', '.plan'), 'Wrong engine path'
names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
colors = {name: [random.randint(0, 255) for _ in range(3)] for i, name in enumerate(names)}
url = 'https://oneflow-static.oss-cn-beijing.aliyuncs.com/tripleMu/image1.jpg'
file = requests.get(url)
img = cv2.imdecode(np.frombuffer(file.content, np.uint8), 1)
_, stream = cudart.cudaStreamCreate()
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 3, 1, 1)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 3, 1, 1)
# Infer TensorRT Engine
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
logger = trt.Logger(trt.Logger.ERROR)
trt.init_libnvinfer_plugins(logger, namespace="")
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
model = runtime.deserialize_cuda_engine(f.read())
bindings = OrderedDict()
fp16 = False # default updated below
for index in range(model.num_bindings):
name = model.get_binding_name(index)
dtype = trt.nptype(model.get_binding_dtype(index))
shape = tuple(model.get_binding_shape(index))
data = np.empty(shape, dtype=np.dtype(dtype))
_, data_ptr = cudart.cudaMallocAsync(data.nbytes, stream)
bindings[name] = Binding(name, dtype, shape, data, data_ptr)
if model.binding_is_input(index) and dtype == np.float16:
fp16 = True
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
context = model.create_execution_context()
image = img.copy()
image, ratio, dwdh = letterbox(image, auto=False)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_copy = image.copy()
image = image.transpose((2, 0, 1))
image = np.expand_dims(image, 0)
image = np.ascontiguousarray(image)
im = image.astype(np.float32)
im /= 255
im -= mean
im /= std
_, image_ptr = cudart.cudaMallocAsync(im.nbytes, stream)
cudart.cudaMemcpyAsync(image_ptr, im.ctypes.data, im.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)
# warmup for 10 times
for _ in range(10):
tmp = np.random.randn(1, 3, 640, 640).astype(np.float32)
_, tmp_ptr = cudart.cudaMallocAsync(tmp.nbytes, stream)
binding_addrs['image'] = tmp_ptr
context.execute_v2(list(binding_addrs.values()))
start = time.perf_counter()
binding_addrs['image'] = image_ptr
context.execute_v2(list(binding_addrs.values()))
print(f'Cost {(time.perf_counter() - start) * 1000}ms')
nums = bindings['num_dets'].data
boxes = bindings['det_boxes'].data
scores = bindings['det_scores'].data
classes = bindings['det_classes'].data
cudart.cudaMemcpyAsync(nums.ctypes.data,
bindings['num_dets'].ptr,
nums.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaMemcpyAsync(boxes.ctypes.data,
bindings['det_boxes'].ptr,
boxes.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaMemcpyAsync(scores.ctypes.data,
bindings['det_scores'].ptr,
scores.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaMemcpyAsync(classes.ctypes.data,
bindings['det_classes'].ptr,
classes.data.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaStreamSynchronize(stream)
cudart.cudaStreamDestroy(stream)
for i in binding_addrs.values():
cudart.cudaFree(i)
num = int(nums[0][0])
box_img = boxes[0, :num].round().astype(np.int32)
score_img = scores[0, :num]
clss_img = classes[0, :num]
for i, (box, score, clss) in enumerate(zip(box_img, score_img, clss_img)):
name = names[int(clss)]
color = colors[name]
cv2.rectangle(image_copy, box[:2].tolist(), box[2:].tolist(), color, 2)
cv2.putText(image_copy, name, (int(box[0]), int(box[1]) - 2), cv2.FONT_HERSHEY_SIMPLEX,
0.75, [225, 255, 255], thickness=2)
cv2.imshow('Result', cv2.cvtColor(image_copy, cv2.COLOR_RGB2BGR))
cv2.waitKey(0)