89 lines
2.8 KiB
Python
89 lines
2.8 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from ppdet.core.workspace import register, create
|
|
from .meta_arch import BaseArch
|
|
|
|
__all__ = ['YOLOF']
|
|
|
|
|
|
@register
|
|
class YOLOF(BaseArch):
|
|
__category__ = 'architecture'
|
|
|
|
def __init__(self,
|
|
backbone='ResNet',
|
|
neck='DilatedEncoder',
|
|
head='YOLOFHead',
|
|
for_mot=False):
|
|
"""
|
|
YOLOF network, see https://arxiv.org/abs/2103.09460
|
|
|
|
Args:
|
|
backbone (nn.Layer): backbone instance
|
|
neck (nn.Layer): DilatedEncoder instance
|
|
head (nn.Layer): YOLOFHead instance
|
|
for_mot (bool): whether return other features for multi-object tracking
|
|
models, default False in pure object detection models.
|
|
"""
|
|
super(YOLOF, self).__init__()
|
|
self.backbone = backbone
|
|
self.neck = neck
|
|
self.head = head
|
|
self.for_mot = for_mot
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, *args, **kwargs):
|
|
# backbone
|
|
backbone = create(cfg['backbone'])
|
|
|
|
# fpn
|
|
kwargs = {'input_shape': backbone.out_shape}
|
|
neck = create(cfg['neck'], **kwargs)
|
|
|
|
# head
|
|
kwargs = {'input_shape': neck.out_shape}
|
|
head = create(cfg['head'], **kwargs)
|
|
|
|
return {
|
|
'backbone': backbone,
|
|
'neck': neck,
|
|
"head": head,
|
|
}
|
|
|
|
def _forward(self):
|
|
body_feats = self.backbone(self.inputs)
|
|
neck_feats = self.neck(body_feats, self.for_mot)
|
|
|
|
if self.training:
|
|
yolo_losses = self.head(neck_feats, self.inputs)
|
|
return yolo_losses
|
|
else:
|
|
yolo_head_outs = self.head(neck_feats)
|
|
bbox, bbox_num = self.head.post_process(yolo_head_outs,
|
|
self.inputs['im_shape'],
|
|
self.inputs['scale_factor'])
|
|
output = {'bbox': bbox, 'bbox_num': bbox_num}
|
|
return output
|
|
|
|
def get_loss(self):
|
|
return self._forward()
|
|
|
|
def get_pred(self):
|
|
return self._forward()
|