73 lines
2.8 KiB
Python
73 lines
2.8 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle
|
|
import numbers
|
|
import numpy as np
|
|
|
|
try:
|
|
from collections.abc import Sequence, Mapping
|
|
except:
|
|
from collections import Sequence, Mapping
|
|
|
|
|
|
def default_collate_fn(batch):
|
|
"""
|
|
Default batch collating function for :code:`paddle.io.DataLoader`,
|
|
get input data as a list of sample datas, each element in list
|
|
if the data of a sample, and sample data should composed of list,
|
|
dictionary, string, number, numpy array, this
|
|
function will parse input data recursively and stack number,
|
|
numpy array and paddle.Tensor datas as batch datas. e.g. for
|
|
following input data:
|
|
[{'image': np.array(shape=[3, 224, 224]), 'label': 1},
|
|
{'image': np.array(shape=[3, 224, 224]), 'label': 3},
|
|
{'image': np.array(shape=[3, 224, 224]), 'label': 4},
|
|
{'image': np.array(shape=[3, 224, 224]), 'label': 5},]
|
|
|
|
|
|
This default collate function zipped each number and numpy array
|
|
field together and stack each field as the batch field as follows:
|
|
{'image': np.array(shape=[4, 3, 224, 224]), 'label': np.array([1, 3, 4, 5])}
|
|
Args:
|
|
batch(list of sample data): batch should be a list of sample data.
|
|
|
|
Returns:
|
|
Batched data: batched each number, numpy array and paddle.Tensor
|
|
in input data.
|
|
"""
|
|
sample = batch[0]
|
|
if isinstance(sample, np.ndarray):
|
|
batch = np.stack(batch, axis=0)
|
|
return batch
|
|
elif isinstance(sample, numbers.Number):
|
|
batch = np.array(batch)
|
|
return batch
|
|
elif isinstance(sample, (str, bytes)):
|
|
return batch
|
|
elif isinstance(sample, Mapping):
|
|
return {
|
|
key: default_collate_fn([d[key] for d in batch])
|
|
for key in sample
|
|
}
|
|
elif isinstance(sample, Sequence):
|
|
sample_fields_num = len(sample)
|
|
if not all(len(sample) == sample_fields_num for sample in iter(batch)):
|
|
raise RuntimeError(
|
|
"fileds number not same among samples in a batch")
|
|
return [default_collate_fn(fields) for fields in zip(*batch)]
|
|
|
|
raise TypeError("batch data con only contains: tensor, numpy.ndarray, "
|
|
"dict, list, number, but got {}".format(type(sample)))
|