Files
fcb_photo_review/paddle_detection/ppdet/modeling/necks/dilated_encoder.py
2024-08-27 14:42:45 +08:00

151 lines
5.2 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from paddle.nn.initializer import KaimingUniform, Constant, Normal
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
__all__ = ['DilatedEncoder']
class Bottleneck(nn.Layer):
def __init__(self, in_channels, mid_channels, dilation):
super(Bottleneck, self).__init__()
self.conv1 = nn.Sequential(* [
nn.Conv2D(
in_channels,
mid_channels,
1,
padding=0,
weight_attr=ParamAttr(initializer=Normal(
mean=0, std=0.01)),
bias_attr=ParamAttr(initializer=Constant(0.0))),
nn.BatchNorm2D(
mid_channels,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0))),
nn.ReLU(),
])
self.conv2 = nn.Sequential(* [
nn.Conv2D(
mid_channels,
mid_channels,
3,
padding=dilation,
dilation=dilation,
weight_attr=ParamAttr(initializer=Normal(
mean=0, std=0.01)),
bias_attr=ParamAttr(initializer=Constant(0.0))),
nn.BatchNorm2D(
mid_channels,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0))),
nn.ReLU(),
])
self.conv3 = nn.Sequential(* [
nn.Conv2D(
mid_channels,
in_channels,
1,
padding=0,
weight_attr=ParamAttr(initializer=Normal(
mean=0, std=0.01)),
bias_attr=ParamAttr(initializer=Constant(0.0))),
nn.BatchNorm2D(
in_channels,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0))),
nn.ReLU(),
])
def forward(self, x):
identity = x
y = self.conv3(self.conv2(self.conv1(x)))
return y + identity
@register
class DilatedEncoder(nn.Layer):
"""
DilatedEncoder used in YOLOF
"""
def __init__(self,
in_channels=[2048],
out_channels=[512],
block_mid_channels=128,
num_residual_blocks=4,
block_dilations=[2, 4, 6, 8]):
super(DilatedEncoder, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
assert len(self.in_channels) == 1, "YOLOF only has one level feature."
assert len(self.out_channels) == 1, "YOLOF only has one level feature."
self.block_mid_channels = block_mid_channels
self.num_residual_blocks = num_residual_blocks
self.block_dilations = block_dilations
out_ch = self.out_channels[0]
self.lateral_conv = nn.Conv2D(
self.in_channels[0],
out_ch,
1,
weight_attr=ParamAttr(initializer=KaimingUniform(
negative_slope=1, nonlinearity='leaky_relu')),
bias_attr=ParamAttr(initializer=Constant(value=0.0)))
self.lateral_norm = nn.BatchNorm2D(
out_ch,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
self.fpn_conv = nn.Conv2D(
out_ch,
out_ch,
3,
padding=1,
weight_attr=ParamAttr(initializer=KaimingUniform(
negative_slope=1, nonlinearity='leaky_relu')))
self.fpn_norm = nn.BatchNorm2D(
out_ch,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
encoder_blocks = []
for i in range(self.num_residual_blocks):
encoder_blocks.append(
Bottleneck(
out_ch,
self.block_mid_channels,
dilation=block_dilations[i]))
self.dilated_encoder_blocks = nn.Sequential(*encoder_blocks)
def forward(self, inputs, for_mot=False):
out = self.lateral_norm(self.lateral_conv(inputs[0]))
out = self.fpn_norm(self.fpn_conv(out))
out = self.dilated_encoder_blocks(out)
return [out]
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
@property
def out_shape(self):
return [ShapeSpec(channels=c) for c in self.out_channels]