Files
fcb_photo_review/paddle_detection/ppdet/modeling/ssod/losses.py
2024-08-27 14:42:45 +08:00

237 lines
8.5 KiB
Python

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ppdet.modeling.losses.iou_loss import GIoULoss
from .utils import QFLv2
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = [
'SSODFCOSLoss',
'SSODPPYOLOELoss',
]
@register
class SSODFCOSLoss(nn.Layer):
def __init__(self, loss_weight=1.0):
super(SSODFCOSLoss, self).__init__()
self.loss_weight = loss_weight
def forward(self, student_head_outs, teacher_head_outs, train_cfg):
# for semi-det distill
student_logits, student_deltas, student_quality = student_head_outs
teacher_logits, teacher_deltas, teacher_quality = teacher_head_outs
nc = student_logits[0].shape[1]
student_logits = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, nc])
for _ in student_logits
],
axis=0)
teacher_logits = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, nc])
for _ in teacher_logits
],
axis=0)
student_deltas = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, 4])
for _ in student_deltas
],
axis=0)
teacher_deltas = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, 4])
for _ in teacher_deltas
],
axis=0)
student_quality = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, 1])
for _ in student_quality
],
axis=0)
teacher_quality = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, 1])
for _ in teacher_quality
],
axis=0)
ratio = train_cfg.get('ratio', 0.01)
with paddle.no_grad():
# Region Selection
count_num = int(teacher_logits.shape[0] * ratio)
teacher_probs = F.sigmoid(teacher_logits)
max_vals = paddle.max(teacher_probs, 1)
sorted_vals, sorted_inds = paddle.topk(max_vals,
teacher_logits.shape[0])
mask = paddle.zeros_like(max_vals)
mask[sorted_inds[:count_num]] = 1.
fg_num = sorted_vals[:count_num].sum()
b_mask = mask > 0
# distill_loss_cls
loss_logits = QFLv2(
F.sigmoid(student_logits),
teacher_probs,
weight=mask,
reduction="sum") / fg_num
# distill_loss_box
inputs = paddle.concat(
(-student_deltas[b_mask][..., :2], student_deltas[b_mask][..., 2:]),
axis=-1)
targets = paddle.concat(
(-teacher_deltas[b_mask][..., :2], teacher_deltas[b_mask][..., 2:]),
axis=-1)
iou_loss = GIoULoss(reduction='mean')
loss_deltas = iou_loss(inputs, targets)
# distill_loss_quality
loss_quality = F.binary_cross_entropy(
F.sigmoid(student_quality[b_mask]),
F.sigmoid(teacher_quality[b_mask]),
reduction='mean')
return {
"distill_loss_cls": loss_logits,
"distill_loss_box": loss_deltas,
"distill_loss_quality": loss_quality,
"fg_sum": fg_num,
}
@register
class SSODPPYOLOELoss(nn.Layer):
def __init__(self, loss_weight=1.0):
super(SSODPPYOLOELoss, self).__init__()
self.loss_weight = loss_weight
def forward(self, student_head_outs, teacher_head_outs, train_cfg):
# for semi-det distill
# student_probs: already sigmoid
student_probs, student_deltas, student_dfl = student_head_outs
teacher_probs, teacher_deltas, teacher_dfl = teacher_head_outs
bs, l, nc = student_probs.shape[:] # bs, l, num_classes
bs, l, _, reg_ch = student_dfl.shape[:] # bs, l, 4, reg_ch
student_probs = student_probs.reshape([-1, nc])
teacher_probs = teacher_probs.reshape([-1, nc])
student_deltas = student_deltas.reshape([-1, 4])
teacher_deltas = teacher_deltas.reshape([-1, 4])
student_dfl = student_dfl.reshape([-1, 4, reg_ch])
teacher_dfl = teacher_dfl.reshape([-1, 4, reg_ch])
ratio = train_cfg.get('ratio', 0.01)
# for contrast loss
curr_iter = train_cfg['curr_iter']
st_iter = train_cfg['st_iter']
if curr_iter == st_iter + 1:
# start semi-det training
self.queue_ptr = 0
self.queue_size = int(bs * l * ratio)
self.queue_feats = paddle.zeros([self.queue_size, nc])
self.queue_probs = paddle.zeros([self.queue_size, nc])
contrast_loss_cfg = train_cfg['contrast_loss']
temperature = contrast_loss_cfg.get('temperature', 0.2)
alpha = contrast_loss_cfg.get('alpha', 0.9)
smooth_iter = contrast_loss_cfg.get('smooth_iter', 100) + st_iter
with paddle.no_grad():
# Region Selection
count_num = int(teacher_probs.shape[0] * ratio)
max_vals = paddle.max(teacher_probs, 1)
sorted_vals, sorted_inds = paddle.topk(max_vals,
teacher_probs.shape[0])
mask = paddle.zeros_like(max_vals)
mask[sorted_inds[:count_num]] = 1.
fg_num = sorted_vals[:count_num].sum()
b_mask = mask > 0.
# for contrast loss
probs = teacher_probs[b_mask].detach()
if curr_iter > smooth_iter: # memory-smoothing
A = paddle.exp(
paddle.mm(teacher_probs[b_mask], self.queue_probs.t()) /
temperature)
A = A / A.sum(1, keepdim=True)
probs = alpha * probs + (1 - alpha) * paddle.mm(
A, self.queue_probs)
n = student_probs[b_mask].shape[0]
# update memory bank
self.queue_feats[self.queue_ptr:self.queue_ptr +
n, :] = teacher_probs[b_mask].detach()
self.queue_probs[self.queue_ptr:self.queue_ptr +
n, :] = teacher_probs[b_mask].detach()
self.queue_ptr = (self.queue_ptr + n) % self.queue_size
# embedding similarity
sim = paddle.exp(
paddle.mm(student_probs[b_mask], teacher_probs[b_mask].t()) / 0.2)
sim_probs = sim / sim.sum(1, keepdim=True)
# pseudo-label graph with self-loop
Q = paddle.mm(probs, probs.t())
Q.fill_diagonal_(1)
pos_mask = (Q >= 0.5).astype('float32')
Q = Q * pos_mask
Q = Q / Q.sum(1, keepdim=True)
# contrastive loss
loss_contrast = -(paddle.log(sim_probs + 1e-7) * Q).sum(1)
loss_contrast = loss_contrast.mean()
# distill_loss_cls
loss_cls = QFLv2(
student_probs, teacher_probs, weight=mask, reduction="sum") / fg_num
# distill_loss_iou
inputs = paddle.concat(
(-student_deltas[b_mask][..., :2], student_deltas[b_mask][..., 2:]),
-1)
targets = paddle.concat(
(-teacher_deltas[b_mask][..., :2], teacher_deltas[b_mask][..., 2:]),
-1)
iou_loss = GIoULoss(reduction='mean')
loss_iou = iou_loss(inputs, targets)
# distill_loss_dfl
loss_dfl = F.cross_entropy(
student_dfl[b_mask].reshape([-1, reg_ch]),
teacher_dfl[b_mask].reshape([-1, reg_ch]),
soft_label=True,
reduction='mean')
return {
"distill_loss_cls": loss_cls,
"distill_loss_iou": loss_iou,
"distill_loss_dfl": loss_dfl,
"distill_loss_contrast": loss_contrast,
"fg_sum": fg_num,
}