Files
fcb_photo_review/paddle_detection/ppdet/metrics/pose3d_metrics.py
2024-08-27 14:42:45 +08:00

201 lines
6.4 KiB
Python

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle.distributed import ParallelEnv
import os
import json
from collections import defaultdict, OrderedDict
import numpy as np
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['Pose3DEval']
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def mean_per_joint_position_error(pred, gt, has_3d_joints):
"""
Compute mPJPE
"""
gt = gt[has_3d_joints == 1]
gt = gt[:, :, :3]
pred = pred[has_3d_joints == 1]
with paddle.no_grad():
gt_pelvis = (gt[:, 2, :] + gt[:, 3, :]) / 2
gt = gt - gt_pelvis[:, None, :]
pred_pelvis = (pred[:, 2, :] + pred[:, 3, :]) / 2
pred = pred - pred_pelvis[:, None, :]
error = paddle.sqrt(((pred - gt)**2).sum(axis=-1)).mean(axis=-1).numpy()
return error
def compute_similarity_transform(S1, S2):
"""Computes a similarity transform (sR, t) that takes
a set of 3D points S1 (3 x N) closest to a set of 3D points S2,
where R is an 3x3 rotation matrix, t 3x1 translation, s scale.
i.e. solves the orthogonal Procrutes problem.
"""
transposed = False
if S1.shape[0] != 3 and S1.shape[0] != 2:
S1 = S1.T
S2 = S2.T
transposed = True
assert (S2.shape[1] == S1.shape[1])
# 1. Remove mean.
mu1 = S1.mean(axis=1, keepdims=True)
mu2 = S2.mean(axis=1, keepdims=True)
X1 = S1 - mu1
X2 = S2 - mu2
# 2. Compute variance of X1 used for scale.
var1 = np.sum(X1**2)
# 3. The outer product of X1 and X2.
K = X1.dot(X2.T)
# 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
# singular vectors of K.
U, s, Vh = np.linalg.svd(K)
V = Vh.T
# Construct Z that fixes the orientation of R to get det(R)=1.
Z = np.eye(U.shape[0])
Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
# Construct R.
R = V.dot(Z.dot(U.T))
# 5. Recover scale.
scale = np.trace(R.dot(K)) / var1
# 6. Recover translation.
t = mu2 - scale * (R.dot(mu1))
# 7. Error:
S1_hat = scale * R.dot(S1) + t
if transposed:
S1_hat = S1_hat.T
return S1_hat
def compute_similarity_transform_batch(S1, S2):
"""Batched version of compute_similarity_transform."""
S1_hat = np.zeros_like(S1)
for i in range(S1.shape[0]):
S1_hat[i] = compute_similarity_transform(S1[i], S2[i])
return S1_hat
def reconstruction_error(S1, S2, reduction='mean'):
"""Do Procrustes alignment and compute reconstruction error."""
S1_hat = compute_similarity_transform_batch(S1, S2)
re = np.sqrt(((S1_hat - S2)**2).sum(axis=-1)).mean(axis=-1)
if reduction == 'mean':
re = re.mean()
elif reduction == 'sum':
re = re.sum()
return re
def all_gather(data):
if paddle.distributed.get_world_size() == 1:
return data
vlist = []
paddle.distributed.all_gather(vlist, data)
data = paddle.concat(vlist, 0)
return data
class Pose3DEval(object):
def __init__(self, output_eval, save_prediction_only=False):
super(Pose3DEval, self).__init__()
self.output_eval = output_eval
self.res_file = os.path.join(output_eval, "pose3d_results.json")
self.save_prediction_only = save_prediction_only
self.reset()
def reset(self):
self.PAmPJPE = AverageMeter()
self.mPJPE = AverageMeter()
self.eval_results = {}
def get_human36m_joints(self, input):
J24_TO_J14 = paddle.to_tensor(
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18])
J24_TO_J17 = paddle.to_tensor(
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19])
return paddle.index_select(input, J24_TO_J14, axis=1)
def update(self, inputs, outputs):
gt_3d_joints = all_gather(inputs['joints_3d'].cuda(ParallelEnv()
.local_rank))
has_3d_joints = all_gather(inputs['has_3d_joints'].cuda(ParallelEnv()
.local_rank))
pred_3d_joints = all_gather(outputs['pose3d'])
if gt_3d_joints.shape[1] == 24:
gt_3d_joints = self.get_human36m_joints(gt_3d_joints)
if pred_3d_joints.shape[1] == 24:
pred_3d_joints = self.get_human36m_joints(pred_3d_joints)
mPJPE_val = mean_per_joint_position_error(pred_3d_joints, gt_3d_joints,
has_3d_joints).mean()
PAmPJPE_val = reconstruction_error(
pred_3d_joints.numpy(),
gt_3d_joints[:, :, :3].numpy(),
reduction=None).mean()
count = int(np.sum(has_3d_joints.numpy()))
self.PAmPJPE.update(PAmPJPE_val * 1000., count)
self.mPJPE.update(mPJPE_val * 1000., count)
def accumulate(self):
if self.save_prediction_only:
logger.info(f'The pose3d result is saved to {self.res_file} '
'and do not evaluate the model.')
return
self.eval_results['pose3d'] = [-self.mPJPE.avg, -self.PAmPJPE.avg]
def log(self):
if self.save_prediction_only:
return
stats_names = ['mPJPE', 'PAmPJPE']
num_values = len(stats_names)
print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |')
print('|---' * (num_values + 1) + '|')
print(' '.join([
'| {:.3f}'.format(abs(value))
for value in self.eval_results['pose3d']
]) + ' |')
def get_results(self):
return self.eval_results