Files
fcb_photo_review/paddle_detection/ppdet/modeling/architectures/centertrack.py
2024-08-27 14:42:45 +08:00

177 lines
6.4 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import math
import numpy as np
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
from ..keypoint_utils import affine_transform
from ppdet.data.transform.op_helper import gaussian_radius, gaussian2D, draw_umich_gaussian
__all__ = ['CenterTrack']
@register
class CenterTrack(BaseArch):
"""
CenterTrack network, see http://arxiv.org/abs/2004.01177
Args:
detector (object): 'CenterNet' instance
plugin_head (object): 'CenterTrackHead' instance
tracker (object): 'CenterTracker' instance
"""
__category__ = 'architecture'
__shared__ = ['mot_metric']
def __init__(self,
detector='CenterNet',
plugin_head='CenterTrackHead',
tracker='CenterTracker',
mot_metric=False):
super(CenterTrack, self).__init__()
self.detector = detector
self.plugin_head = plugin_head
self.tracker = tracker
self.mot_metric = mot_metric
self.pre_image = None
self.deploy = False
@classmethod
def from_config(cls, cfg, *args, **kwargs):
detector = create(cfg['detector'])
detector_out_shape = detector.neck and detector.neck.out_shape or detector.backbone.out_shape
kwargs = {'input_shape': detector_out_shape}
plugin_head = create(cfg['plugin_head'], **kwargs)
tracker = create(cfg['tracker'])
return {
'detector': detector,
'plugin_head': plugin_head,
'tracker': tracker,
}
def _forward(self):
if self.training:
det_outs = self.detector(self.inputs)
neck_feat = det_outs['neck_feat']
losses = {}
for k, v in det_outs.items():
if 'loss' not in k: continue
losses.update({k: v})
plugin_outs = self.plugin_head(neck_feat, self.inputs)
for k, v in plugin_outs.items():
if 'loss' not in k: continue
losses.update({k: v})
losses['loss'] = det_outs['det_loss'] + plugin_outs['plugin_loss']
return losses
else:
if not self.mot_metric:
# detection, support bs>=1
det_outs = self.detector(self.inputs)
return {
'bbox': det_outs['bbox'],
'bbox_num': det_outs['bbox_num']
}
else:
# MOT, only support bs=1
if not self.deploy:
if self.pre_image is None:
self.pre_image = self.inputs['image']
# initializing tracker for the first frame
self.tracker.init_track([])
self.inputs['pre_image'] = self.pre_image
self.pre_image = self.inputs[
'image'] # Note: update for next image
# render input heatmap from tracker status
pre_hm = self.get_additional_inputs(
self.tracker.tracks, self.inputs, with_hm=True)
self.inputs['pre_hm'] = paddle.to_tensor(pre_hm)
# model inference
det_outs = self.detector(self.inputs)
neck_feat = det_outs['neck_feat']
result = self.plugin_head(
neck_feat, self.inputs, det_outs['bbox'],
det_outs['bbox_inds'], det_outs['topk_clses'],
det_outs['topk_ys'], det_outs['topk_xs'])
if not self.deploy:
# convert the cropped and 4x downsampled output coordinate system
# back to the input image coordinate system
result = self.plugin_head.centertrack_post_process(
result, self.inputs, self.tracker.out_thresh)
return result
def get_pred(self):
return self._forward()
def get_loss(self):
return self._forward()
def reset_tracking(self):
self.tracker.reset()
self.pre_image = None
def get_additional_inputs(self, dets, meta, with_hm=True):
# Render input heatmap from previous trackings.
trans_input = meta['trans_input'][0].numpy()
inp_width, inp_height = int(meta['inp_width'][0]), int(meta[
'inp_height'][0])
input_hm = np.zeros((1, inp_height, inp_width), dtype=np.float32)
for det in dets:
if det['score'] < self.tracker.pre_thresh:
continue
bbox = affine_transform_bbox(det['bbox'], trans_input, inp_width,
inp_height)
h, w = bbox[3] - bbox[1], bbox[2] - bbox[0]
if (h > 0 and w > 0):
radius = gaussian_radius(
(math.ceil(h), math.ceil(w)), min_overlap=0.7)
radius = max(0, int(radius))
ct = np.array(
[(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2],
dtype=np.float32)
ct_int = ct.astype(np.int32)
if with_hm:
input_hm[0] = draw_umich_gaussian(input_hm[0], ct_int,
radius)
if with_hm:
input_hm = input_hm[np.newaxis]
return input_hm
def affine_transform_bbox(bbox, trans, width, height):
bbox = np.array(copy.deepcopy(bbox), dtype=np.float32)
bbox[:2] = affine_transform(bbox[:2], trans)
bbox[2:] = affine_transform(bbox[2:], trans)
bbox[[0, 2]] = np.clip(bbox[[0, 2]], 0, width - 1)
bbox[[1, 3]] = np.clip(bbox[[1, 3]], 0, height - 1)
return bbox