111 lines
3.9 KiB
Python
111 lines
3.9 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from . import distill_loss
|
|
from . import distill_model
|
|
from . import ofa
|
|
from . import prune
|
|
from . import quant
|
|
from . import unstructured_prune
|
|
|
|
from .distill_loss import *
|
|
from .distill_model import *
|
|
from .ofa import *
|
|
from .prune import *
|
|
from .quant import *
|
|
from .unstructured_prune import *
|
|
|
|
import yaml
|
|
from ppdet.core.workspace import load_config
|
|
from ppdet.utils.checkpoint import load_pretrain_weight
|
|
|
|
|
|
def build_slim_model(cfg, slim_cfg, mode='train'):
|
|
with open(slim_cfg) as f:
|
|
slim_load_cfg = yaml.load(f, Loader=yaml.Loader)
|
|
|
|
if mode != 'train' and slim_load_cfg['slim'] == 'Distill':
|
|
return cfg
|
|
|
|
if slim_load_cfg['slim'] == 'Distill':
|
|
if "slim_method" in slim_load_cfg and slim_load_cfg[
|
|
'slim_method'] == "FGD":
|
|
model = FGDDistillModel(cfg, slim_cfg)
|
|
elif "slim_method" in slim_load_cfg and slim_load_cfg[
|
|
'slim_method'] == "LD":
|
|
model = LDDistillModel(cfg, slim_cfg)
|
|
elif "slim_method" in slim_load_cfg and slim_load_cfg[
|
|
'slim_method'] == "CWD":
|
|
model = CWDDistillModel(cfg, slim_cfg)
|
|
elif "slim_method" in slim_load_cfg and slim_load_cfg[
|
|
'slim_method'] == "PPYOLOEDistill":
|
|
model = PPYOLOEDistillModel(cfg, slim_cfg)
|
|
else:
|
|
# common distillation model
|
|
model = DistillModel(cfg, slim_cfg)
|
|
cfg['model'] = model
|
|
cfg['slim_type'] = cfg.slim
|
|
elif slim_load_cfg['slim'] == 'OFA':
|
|
load_config(slim_cfg)
|
|
model = create(cfg.architecture)
|
|
load_pretrain_weight(model, cfg.weights)
|
|
slim = create(cfg.slim)
|
|
cfg['slim'] = slim
|
|
cfg['model'] = slim(model, model.state_dict())
|
|
cfg['slim_type'] = cfg.slim
|
|
elif slim_load_cfg['slim'] == 'DistillPrune':
|
|
if mode == 'train':
|
|
model = DistillModel(cfg, slim_cfg)
|
|
pruner = create(cfg.pruner)
|
|
pruner(model.student_model)
|
|
else:
|
|
model = create(cfg.architecture)
|
|
weights = cfg.weights
|
|
load_config(slim_cfg)
|
|
pruner = create(cfg.pruner)
|
|
model = pruner(model)
|
|
load_pretrain_weight(model, weights)
|
|
cfg['model'] = model
|
|
cfg['slim_type'] = cfg.slim
|
|
elif slim_load_cfg['slim'] == 'PTQ':
|
|
model = create(cfg.architecture)
|
|
load_config(slim_cfg)
|
|
load_pretrain_weight(model, cfg.weights)
|
|
slim = create(cfg.slim)
|
|
cfg['slim_type'] = cfg.slim
|
|
cfg['slim'] = slim
|
|
cfg['model'] = slim(model)
|
|
elif slim_load_cfg['slim'] == 'UnstructuredPruner':
|
|
load_config(slim_cfg)
|
|
slim = create(cfg.slim)
|
|
cfg['slim_type'] = cfg.slim
|
|
cfg['slim'] = slim
|
|
cfg['unstructured_prune'] = True
|
|
else:
|
|
load_config(slim_cfg)
|
|
model = create(cfg.architecture)
|
|
if mode == 'train':
|
|
load_pretrain_weight(model, cfg.pretrain_weights)
|
|
slim = create(cfg.slim)
|
|
cfg['slim_type'] = cfg.slim
|
|
# TODO: fix quant export model in framework.
|
|
if mode == 'test' and 'QAT' in slim_load_cfg['slim']:
|
|
slim.quant_config['activation_preprocess_type'] = None
|
|
cfg['model'] = slim(model)
|
|
cfg['slim'] = slim
|
|
if mode != 'train':
|
|
load_pretrain_weight(cfg['model'], cfg.weights)
|
|
|
|
return cfg
|