Files
fcb_photo_review/services/paddle_services/paddle_detection/detector.py
2024-09-26 17:20:38 +08:00

61 lines
1.7 KiB
Python

import os.path
from collections import defaultdict
import cv2
import numpy as np
from . import PADDLE_DET, MODEL_DIR
from .deploy.third_engine.onnx.infer import PredictConfig
from .deploy.third_engine.onnx.preprocess import Compose
def predict_image(infer_config, predictor, img_path):
# load preprocess transforms
transforms = Compose(infer_config.preprocess_infos)
# predict image
inputs = transforms(img_path)
inputs['image'] = np.array(inputs['image']).astype('float32')
inputs_name = [var.name for var in predictor.get_inputs()]
inputs = {k: inputs[k][None,] for k in inputs_name}
outputs = predictor.run(output_names=None, input_feed=inputs)
bboxes = np.array(outputs[0])
result = defaultdict(list)
for bbox in bboxes:
if bbox[0] > -1 and bbox[1] > infer_config.draw_threshold:
result[bbox[0]].append({'score': bbox[1], 'box': bbox[2:]})
return result
def detect_image(img_path):
infer_cfg = os.path.join(MODEL_DIR, 'infer_cfg.yml')
# load infer config
infer_config = PredictConfig(infer_cfg)
return predict_image(infer_config, PADDLE_DET, img_path)
def capture(image, rectangle):
x1, y1, x2, y2 = rectangle
height, width = image.shape[:2]
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 > width:
x2 = width
if y2 > height:
y2 = height
return image[int(y1):int(y2), int(x1):int(x2)]
def get_book_areas(img_path):
detect_result = detect_image(img_path)
book_areas = detect_result[73]
result = []
image = cv2.imread(img_path)
for book_area in book_areas:
result.append(capture(image, book_area['box']))
return result