62 lines
2.3 KiB
Python
62 lines
2.3 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
import numpy as np
|
|
from ppdet.core.workspace import register
|
|
|
|
__all__ = ['COTLoss']
|
|
|
|
@register
|
|
class COTLoss(nn.Layer):
|
|
__shared__ = ['num_classes']
|
|
def __init__(self,
|
|
num_classes=80,
|
|
cot_scale=1,
|
|
cot_lambda=1):
|
|
super(COTLoss, self).__init__()
|
|
self.cot_scale = cot_scale
|
|
self.cot_lambda = cot_lambda
|
|
self.num_classes = num_classes
|
|
|
|
def forward(self, scores, targets, cot_relation):
|
|
cls_name = 'loss_bbox_cls_cot'
|
|
loss_bbox = {}
|
|
|
|
tgt_labels, tgt_bboxes, tgt_gt_inds = targets
|
|
tgt_labels = paddle.concat(tgt_labels) if len(
|
|
tgt_labels) > 1 else tgt_labels[0]
|
|
mask = (tgt_labels < self.num_classes)
|
|
valid_inds = paddle.nonzero(tgt_labels >= 0).flatten()
|
|
if valid_inds.shape[0] == 0:
|
|
loss_bbox[cls_name] = paddle.zeros([1], dtype='float32')
|
|
else:
|
|
tgt_labels = tgt_labels.cast('int64')
|
|
valid_cot_targets = []
|
|
for i in range(tgt_labels.shape[0]):
|
|
train_label = tgt_labels[i]
|
|
if train_label < self.num_classes:
|
|
valid_cot_targets.append(cot_relation[train_label])
|
|
coco_targets = paddle.to_tensor(valid_cot_targets)
|
|
coco_targets.stop_gradient = True
|
|
coco_loss = - coco_targets * F.log_softmax(scores[mask][:, :-1] * self.cot_scale)
|
|
loss_bbox[cls_name] = self.cot_lambda * paddle.mean(paddle.sum(coco_loss, axis=-1))
|
|
return loss_bbox
|