Files
fcb_photo_review/paddle_detection/deploy/serving/cpp/serving_client.py
2024-08-27 14:42:45 +08:00

126 lines
4.6 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import glob
import base64
import argparse
from paddle_serving_client import Client
from paddle_serving_client.proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
parser = argparse.ArgumentParser(description="args for paddleserving")
parser.add_argument(
"--serving_client", type=str, help="the directory of serving_client")
parser.add_argument("--image_dir", type=str)
parser.add_argument("--image_file", type=str)
parser.add_argument("--http_port", type=int, default=9997)
parser.add_argument(
"--threshold", type=float, default=0.5, help="Threshold of score.")
args = parser.parse_args()
def get_test_images(infer_dir, infer_img):
"""
Get image path list in TEST mode
"""
assert infer_img is not None or infer_dir is not None, \
"--image_file or --image_dir should be set"
assert infer_img is None or os.path.isfile(infer_img), \
"{} is not a file".format(infer_img)
assert infer_dir is None or os.path.isdir(infer_dir), \
"{} is not a directory".format(infer_dir)
# infer_img has a higher priority
if infer_img and os.path.isfile(infer_img):
return [infer_img]
images = set()
infer_dir = os.path.abspath(infer_dir)
assert os.path.isdir(infer_dir), \
"infer_dir {} is not a directory".format(infer_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
assert len(images) > 0, "no image found in {}".format(infer_dir)
print("Found {} inference images in total.".format(len(images)))
return images
def postprocess(fetch_dict, fetch_vars, draw_threshold=0.5):
result = []
if "conv2d_441.tmp_1" in fetch_dict:
heatmap = fetch_dict["conv2d_441.tmp_1"]
print(heatmap)
result.append(heatmap)
else:
bboxes = fetch_dict[fetch_vars[0]]
for bbox in bboxes:
if bbox[0] > -1 and bbox[1] > draw_threshold:
print(f"{int(bbox[0])} {bbox[1]} "
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
result.append(f"{int(bbox[0])} {bbox[1]} "
f"{bbox[2]} {bbox[3]} {bbox[4]} {bbox[5]}")
return result
def get_model_vars(client_config_dir):
# read original serving_client_conf.prototxt
client_config_file = os.path.join(client_config_dir,
"serving_client_conf.prototxt")
with open(client_config_file, 'r') as f:
model_var = google.protobuf.text_format.Merge(
str(f.read()), m_config.GeneralModelConfig())
# modify feed_var to run core/general-server/op/
[model_var.feed_var.pop() for _ in range(len(model_var.feed_var))]
feed_var = m_config.FeedVar()
feed_var.name = "input"
feed_var.alias_name = "input"
feed_var.is_lod_tensor = False
feed_var.feed_type = 20
feed_var.shape.extend([1])
model_var.feed_var.extend([feed_var])
with open(
os.path.join(client_config_dir, "serving_client_conf_cpp.prototxt"),
"w") as f:
f.write(str(model_var))
# get feed_vars/fetch_vars
feed_vars = [var.name for var in model_var.feed_var]
fetch_vars = [var.name for var in model_var.fetch_var]
return feed_vars, fetch_vars
if __name__ == '__main__':
url = f"127.0.0.1:{args.http_port}"
logid = 10000
img_list = get_test_images(args.image_dir, args.image_file)
feed_vars, fetch_vars = get_model_vars(args.serving_client)
client = Client()
client.load_client_config(
os.path.join(args.serving_client, "serving_client_conf_cpp.prototxt"))
client.connect([url])
for img_file in img_list:
with open(img_file, 'rb') as file:
image_data = file.read()
image = base64.b64encode(image_data).decode('utf8')
fetch_dict = client.predict(
feed={feed_vars[0]: image}, fetch=fetch_vars)
result = postprocess(fetch_dict, fetch_vars, args.threshold)