Files
fcb_photo_review/paddle_detection/ppdet/modeling/architectures/retinanet.py
2024-08-27 14:42:45 +08:00

85 lines
2.8 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
import paddle
import paddle.nn.functional as F
__all__ = ['RetinaNet']
@register
class RetinaNet(BaseArch):
__category__ = 'architecture'
def __init__(self, backbone, neck, head):
super(RetinaNet, self).__init__()
self.backbone = backbone
self.neck = neck
self.head = head
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = create(cfg['neck'], **kwargs)
kwargs = {'input_shape': neck.out_shape}
head = create(cfg['head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
'head': head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
neck_feats = self.neck(body_feats)
if self.training:
return self.head(neck_feats, self.inputs)
else:
head_outs = self.head(neck_feats)
bbox, bbox_num, nms_keep_idx = self.head.post_process(
head_outs, self.inputs['im_shape'], self.inputs['scale_factor'])
if self.use_extra_data:
extra_data = {} # record the bbox output before nms, such like scores and nms_keep_idx
"""extra_data:{
'scores': predict scores,
'nms_keep_idx': bbox index before nms,
}
"""
preds_logits = self.head.decode_cls_logits(head_outs[0])
preds_scores = F.sigmoid(preds_logits)
extra_data['logits'] = preds_logits
extra_data['scores'] = preds_scores
extra_data['nms_keep_idx'] = nms_keep_idx # bbox index before nms
return {'bbox': bbox, 'bbox_num': bbox_num, "extra_data": extra_data}
else:
return {'bbox': bbox, 'bbox_num': bbox_num}
def get_loss(self):
return self._forward()
def get_pred(self):
return self._forward()