Files
fcb_photo_review/paddle_detection/ppdet/modeling/heads/fcosr_head.py
2024-08-27 14:42:45 +08:00

397 lines
14 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from paddle import ParamAttr
from paddle.regularizer import L2Decay
from .fcos_head import ScaleReg
from ..initializer import bias_init_with_prob, constant_, normal_
from ..ops import get_act_fn, anchor_generator
from ..rbox_utils import box2corners
from ..losses import ProbIoULoss
import numpy as np
__all__ = ['FCOSRHead']
def trunc_div(a, b):
ipt = paddle.divide(a, b)
sign_ipt = paddle.sign(ipt)
abs_ipt = paddle.abs(ipt)
abs_ipt = paddle.floor(abs_ipt)
out = paddle.multiply(sign_ipt, abs_ipt)
return out
def fmod(a, b):
return a - trunc_div(a, b) * b
def fmod_eval(a, b):
return a - a.divide(b).cast(paddle.int32).cast(paddle.float32) * b
class ConvBNLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size=3,
stride=1,
groups=1,
padding=0,
norm_cfg={'name': 'gn',
'num_groups': 32},
act=None):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=padding,
groups=groups,
bias_attr=False)
norm_type = norm_cfg['name']
if norm_type in ['sync_bn', 'bn']:
self.norm = nn.BatchNorm2D(
ch_out,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
else:
groups = norm_cfg.get('num_groups', 1)
self.norm = nn.GroupNorm(
num_groups=groups,
num_channels=ch_out,
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
self.act = get_act_fn(act) if act is None or isinstance(act, (
str, dict)) else act
def forward(self, x):
x = self.conv(x)
x = self.norm(x)
x = self.act(x)
return x
@register
class FCOSRHead(nn.Layer):
""" FCOSR Head, refer to https://arxiv.org/abs/2111.10780 for details """
__shared__ = ['num_classes', 'trt']
__inject__ = ['assigner', 'nms']
def __init__(self,
num_classes=15,
in_channels=256,
feat_channels=256,
stacked_convs=4,
act='relu',
fpn_strides=[4, 8, 16, 32, 64],
trt=False,
loss_weight={'class': 1.0,
'probiou': 1.0},
norm_cfg={'name': 'gn',
'num_groups': 32},
assigner='FCOSRAssigner',
nms='MultiClassNMS'):
super(FCOSRHead, self).__init__()
self.in_channels = in_channels
self.num_classes = num_classes
self.fpn_strides = fpn_strides
self.stacked_convs = stacked_convs
self.loss_weight = loss_weight
self.half_pi = paddle.to_tensor(
[1.5707963267948966], dtype=paddle.float32)
self.probiou_loss = ProbIoULoss(mode='l1')
act = get_act_fn(
act, trt=trt) if act is None or isinstance(act,
(str, dict)) else act
self.trt = trt
self.loss_weight = loss_weight
self.assigner = assigner
self.nms = nms
# stem
self.stem_cls = nn.LayerList()
self.stem_reg = nn.LayerList()
for i in range(self.stacked_convs):
self.stem_cls.append(
ConvBNLayer(
self.in_channels[i],
feat_channels,
filter_size=3,
stride=1,
padding=1,
norm_cfg=norm_cfg,
act=act))
self.stem_reg.append(
ConvBNLayer(
self.in_channels[i],
feat_channels,
filter_size=3,
stride=1,
padding=1,
norm_cfg=norm_cfg,
act=act))
self.scales = nn.LayerList(
[ScaleReg() for _ in range(len(fpn_strides))])
# prediction
self.pred_cls = nn.Conv2D(feat_channels, self.num_classes, 3, padding=1)
self.pred_xy = nn.Conv2D(feat_channels, 2, 3, padding=1)
self.pred_wh = nn.Conv2D(feat_channels, 2, 3, padding=1)
self.pred_angle = nn.Conv2D(feat_channels, 1, 3, padding=1)
self._init_weights()
def _init_weights(self):
for cls_, reg_ in zip(self.stem_cls, self.stem_reg):
normal_(cls_.conv.weight, std=0.01)
normal_(reg_.conv.weight, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_(self.pred_cls.weight, std=0.01)
constant_(self.pred_cls.bias, bias_cls)
normal_(self.pred_xy.weight, std=0.01)
normal_(self.pred_wh.weight, std=0.01)
normal_(self.pred_angle.weight, std=0.01)
@classmethod
def from_config(cls, cfg, input_shape):
return {'in_channels': [i.channels for i in input_shape], }
def _generate_anchors(self, feats):
if self.trt:
anchor_points = []
for feat, stride in zip(feats, self.fpn_strides):
_, _, h, w = paddle.shape(feat)
anchor, _ = anchor_generator(
feat,
stride * 4,
1.0, [1.0, 1.0, 1.0, 1.0], [stride, stride],
offset=0.5)
x1, y1, x2, y2 = paddle.split(anchor, 4, axis=-1)
xc = (x1 + x2 + 1) / 2
yc = (y1 + y2 + 1) / 2
anchor_point = paddle.concat(
[xc, yc], axis=-1).reshape((1, h * w, 2))
anchor_points.append(anchor_point)
anchor_points = paddle.concat(anchor_points, axis=1)
return anchor_points, None, None
else:
anchor_points = []
stride_tensor = []
num_anchors_list = []
for feat, stride in zip(feats, self.fpn_strides):
_, _, h, w = paddle.shape(feat)
shift_x = (paddle.arange(end=w) + 0.5) * stride
shift_y = (paddle.arange(end=h) + 0.5) * stride
shift_y, shift_x = paddle.meshgrid(shift_y, shift_x)
anchor_point = paddle.cast(
paddle.stack(
[shift_x, shift_y], axis=-1), dtype='float32')
anchor_points.append(anchor_point.reshape([1, -1, 2]))
stride_tensor.append(
paddle.full(
[1, h * w, 1], stride, dtype='float32'))
num_anchors_list.append(h * w)
anchor_points = paddle.concat(anchor_points, axis=1)
stride_tensor = paddle.concat(stride_tensor, axis=1)
return anchor_points, stride_tensor, num_anchors_list
def forward(self, feats, target=None):
if self.training:
return self.forward_train(feats, target)
else:
return self.forward_eval(feats, target)
def forward_train(self, feats, target=None):
anchor_points, stride_tensor, num_anchors_list = self._generate_anchors(
feats)
cls_pred_list, reg_pred_list = [], []
for stride, feat, scale in zip(self.fpn_strides, feats, self.scales):
# cls
cls_feat = feat
for cls_layer in self.stem_cls:
cls_feat = cls_layer(cls_feat)
cls_pred = F.sigmoid(self.pred_cls(cls_feat))
cls_pred_list.append(cls_pred.flatten(2).transpose((0, 2, 1)))
# reg
reg_feat = feat
for reg_layer in self.stem_reg:
reg_feat = reg_layer(reg_feat)
reg_xy = scale(self.pred_xy(reg_feat)) * stride
reg_wh = F.elu(scale(self.pred_wh(reg_feat)) + 1.) * stride
reg_angle = self.pred_angle(reg_feat)
reg_angle = fmod(reg_angle, self.half_pi)
reg_pred = paddle.concat([reg_xy, reg_wh, reg_angle], axis=1)
reg_pred_list.append(reg_pred.flatten(2).transpose((0, 2, 1)))
cls_pred_list = paddle.concat(cls_pred_list, axis=1)
reg_pred_list = paddle.concat(reg_pred_list, axis=1)
return self.get_loss([
cls_pred_list, reg_pred_list, anchor_points, stride_tensor,
num_anchors_list
], target)
def forward_eval(self, feats, target=None):
cls_pred_list, reg_pred_list = [], []
anchor_points, _, _ = self._generate_anchors(feats)
for stride, feat, scale in zip(self.fpn_strides, feats, self.scales):
b, _, h, w = paddle.shape(feat)
# cls
cls_feat = feat
for cls_layer in self.stem_cls:
cls_feat = cls_layer(cls_feat)
cls_pred = F.sigmoid(self.pred_cls(cls_feat))
cls_pred_list.append(cls_pred.reshape([b, self.num_classes, h * w]))
# reg
reg_feat = feat
for reg_layer in self.stem_reg:
reg_feat = reg_layer(reg_feat)
reg_xy = scale(self.pred_xy(reg_feat)) * stride
reg_wh = F.elu(scale(self.pred_wh(reg_feat)) + 1.) * stride
reg_angle = self.pred_angle(reg_feat)
reg_angle = fmod_eval(reg_angle, self.half_pi)
reg_pred = paddle.concat([reg_xy, reg_wh, reg_angle], axis=1)
reg_pred = reg_pred.reshape([b, 5, h * w]).transpose((0, 2, 1))
reg_pred_list.append(reg_pred)
cls_pred_list = paddle.concat(cls_pred_list, axis=2)
reg_pred_list = paddle.concat(reg_pred_list, axis=1)
reg_pred_list = self._bbox_decode(anchor_points, reg_pred_list)
return cls_pred_list, reg_pred_list
def _bbox_decode(self, points, reg_pred_list):
xy, wha = paddle.split(reg_pred_list, [2, 3], axis=-1)
xy = xy + points
return paddle.concat([xy, wha], axis=-1)
def _box2corners(self, pred_bboxes):
""" convert (x, y, w, h, angle) to (x1, y1, x2, y2, x3, y3, x4, y4)
Args:
pred_bboxes (Tensor): [B, N, 5]
Returns:
polys (Tensor): [B, N, 8]
"""
x, y, w, h, angle = paddle.split(pred_bboxes, 5, axis=-1)
cos_a_half = paddle.cos(angle) * 0.5
sin_a_half = paddle.sin(angle) * 0.5
w_x = cos_a_half * w
w_y = sin_a_half * w
h_x = -sin_a_half * h
h_y = cos_a_half * h
return paddle.concat(
[
x + w_x + h_x, y + w_y + h_y, x - w_x + h_x, y - w_y + h_y,
x - w_x - h_x, y - w_y - h_y, x + w_x - h_x, y + w_y - h_y
],
axis=-1)
def get_loss(self, head_outs, gt_meta):
cls_pred_list, reg_pred_list, anchor_points, stride_tensor, num_anchors_list = head_outs
gt_labels = gt_meta['gt_class']
gt_bboxes = gt_meta['gt_bbox']
gt_rboxes = gt_meta['gt_rbox']
pad_gt_mask = gt_meta['pad_gt_mask']
# decode
pred_rboxes = self._bbox_decode(anchor_points, reg_pred_list)
# label assignment
assigned_labels, assigned_rboxes, assigned_scores = \
self.assigner(
anchor_points,
stride_tensor,
num_anchors_list,
gt_labels,
gt_bboxes,
gt_rboxes,
pad_gt_mask,
self.num_classes,
pred_rboxes
)
# reg_loss
mask_positive = (assigned_labels != self.num_classes)
num_pos = mask_positive.sum().item()
if num_pos > 0:
bbox_mask = mask_positive.unsqueeze(-1).tile([1, 1, 5])
pred_rboxes_pos = paddle.masked_select(pred_rboxes,
bbox_mask).reshape([-1, 5])
assigned_rboxes_pos = paddle.masked_select(
assigned_rboxes, bbox_mask).reshape([-1, 5])
bbox_weight = paddle.masked_select(
assigned_scores.sum(-1), mask_positive).reshape([-1])
avg_factor = bbox_weight.sum()
loss_probiou = self.probiou_loss(pred_rboxes_pos,
assigned_rboxes_pos)
loss_probiou = paddle.sum(loss_probiou * bbox_weight) / avg_factor
else:
loss_probiou = pred_rboxes.sum() * 0.
avg_factor = max(num_pos, 1.0)
# cls_loss
loss_cls = self._qfocal_loss(
cls_pred_list, assigned_scores, reduction='sum')
loss_cls = loss_cls / avg_factor
loss = self.loss_weight['class'] * loss_cls + \
self.loss_weight['probiou'] * loss_probiou
out_dict = {
'loss': loss,
'loss_probiou': loss_probiou,
'loss_cls': loss_cls
}
return out_dict
@staticmethod
def _qfocal_loss(score, label, gamma=2.0, reduction='sum'):
weight = (score - label).pow(gamma)
loss = F.binary_cross_entropy(
score, label, weight=weight, reduction=reduction)
return loss
def post_process(self, head_outs, scale_factor):
pred_scores, pred_rboxes = head_outs
# [B, N, 5] -> [B, N, 4, 2] -> [B, N, 8]
pred_rboxes = self._box2corners(pred_rboxes)
# scale bbox to origin
scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
scale_factor = paddle.concat(
[
scale_x, scale_y, scale_x, scale_y, scale_x, scale_y, scale_x,
scale_y
],
axis=-1).reshape([-1, 1, 8])
pred_rboxes /= scale_factor
bbox_pred, bbox_num, before_nms_indexes = self.nms(pred_rboxes,
pred_scores)
return bbox_pred, bbox_num, before_nms_indexes