Files
fcb_photo_review/paddle_detection/ppdet/modeling/architectures/faster_rcnn.py
2024-08-27 14:42:45 +08:00

168 lines
6.1 KiB
Python

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
import numpy as np
__all__ = ['FasterRCNN']
@register
class FasterRCNN(BaseArch):
"""
Faster R-CNN network, see https://arxiv.org/abs/1506.01497
Args:
backbone (object): backbone instance
rpn_head (object): `RPNHead` instance
bbox_head (object): `BBoxHead` instance
bbox_post_process (object): `BBoxPostProcess` instance
neck (object): 'FPN' instance
"""
__category__ = 'architecture'
__inject__ = ['bbox_post_process']
def __init__(self,
backbone,
rpn_head,
bbox_head,
bbox_post_process,
neck=None):
super(FasterRCNN, self).__init__()
self.backbone = backbone
self.neck = neck
self.rpn_head = rpn_head
self.bbox_head = bbox_head
self.bbox_post_process = bbox_post_process
def init_cot_head(self, relationship):
self.bbox_head.init_cot_head(relationship)
@classmethod
def from_config(cls, cfg, *args, **kwargs):
backbone = create(cfg['backbone'])
kwargs = {'input_shape': backbone.out_shape}
neck = cfg['neck'] and create(cfg['neck'], **kwargs)
out_shape = neck and neck.out_shape or backbone.out_shape
kwargs = {'input_shape': out_shape}
rpn_head = create(cfg['rpn_head'], **kwargs)
bbox_head = create(cfg['bbox_head'], **kwargs)
return {
'backbone': backbone,
'neck': neck,
"rpn_head": rpn_head,
"bbox_head": bbox_head,
}
def _forward(self):
body_feats = self.backbone(self.inputs)
if self.neck is not None:
body_feats = self.neck(body_feats)
if self.training:
rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs)
bbox_loss, _ = self.bbox_head(body_feats, rois, rois_num,
self.inputs)
return rpn_loss, bbox_loss
else:
rois, rois_num, _ = self.rpn_head(body_feats, self.inputs)
preds, _ = self.bbox_head(body_feats, rois, rois_num, None)
im_shape = self.inputs['im_shape']
scale_factor = self.inputs['scale_factor']
bbox, bbox_num, nms_keep_idx = self.bbox_post_process(
preds, (rois, rois_num), im_shape, scale_factor)
# rescale the prediction back to origin image
bboxes, bbox_pred, bbox_num = self.bbox_post_process.get_pred(
bbox, bbox_num, im_shape, scale_factor)
if self.use_extra_data:
extra_data = {
} # record the bbox output before nms, such like scores and nms_keep_idx
"""extra_data:{
'scores': predict scores,
'nms_keep_idx': bbox index before nms,
}
"""
extra_data['scores'] = preds[1] # predict scores (probability)
# Todo: get logits output
extra_data[
'nms_keep_idx'] = nms_keep_idx # bbox index before nms
return bbox_pred, bbox_num, extra_data
else:
return bbox_pred, bbox_num
def get_loss(self, ):
rpn_loss, bbox_loss = self._forward()
loss = {}
loss.update(rpn_loss)
loss.update(bbox_loss)
total_loss = paddle.add_n(list(loss.values()))
loss.update({'loss': total_loss})
return loss
def get_pred(self):
if self.use_extra_data:
bbox_pred, bbox_num, extra_data = self._forward()
output = {
'bbox': bbox_pred,
'bbox_num': bbox_num,
'extra_data': extra_data
}
else:
bbox_pred, bbox_num = self._forward()
output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
return output
def target_bbox_forward(self, data):
body_feats = self.backbone(data)
if self.neck is not None:
body_feats = self.neck(body_feats)
rois = [roi for roi in data['gt_bbox']]
rois_num = paddle.concat([paddle.shape(roi)[0:1] for roi in rois])
preds, _ = self.bbox_head(body_feats, rois, rois_num, None, cot=True)
return preds
def relationship_learning(self, loader, num_classes_novel):
print('computing relationship')
train_labels_list = []
label_list = []
for step_id, data in enumerate(loader):
_, bbox_prob = self.target_bbox_forward(data)
batch_size = data['im_id'].shape[0]
for i in range(batch_size):
num_bbox = data['gt_class'][i].shape[0]
train_labels = data['gt_class'][i]
train_labels_list.append(train_labels.numpy().squeeze(1))
base_labels = bbox_prob.detach().numpy()[:, :-1]
label_list.append(base_labels)
labels = np.concatenate(train_labels_list, 0)
probabilities = np.concatenate(label_list, 0)
N_t = np.max(labels) + 1
conditional = []
for i in range(N_t):
this_class = probabilities[labels == i]
average = np.mean(this_class, axis=0, keepdims=True)
conditional.append(average)
return np.concatenate(conditional)