Files
fcb_photo_review/paddle_detection/configs/rotate/tools/inference_benchmark.py
2024-08-27 14:42:45 +08:00

379 lines
13 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import six
import glob
import time
import yaml
import argparse
import cv2
import numpy as np
import paddle
import paddle.version as paddle_version
from paddle.inference import Config, create_predictor, PrecisionType, get_trt_runtime_version
TUNED_TRT_DYNAMIC_MODELS = {'DETR'}
def check_version(version='2.2'):
err = "PaddlePaddle version {} or higher is required, " \
"or a suitable develop version is satisfied as well. \n" \
"Please make sure the version is good with your code.".format(version)
version_installed = [
paddle_version.major, paddle_version.minor, paddle_version.patch,
paddle_version.rc
]
if version_installed == ['0', '0', '0', '0']:
return
if version == 'develop':
raise Exception("PaddlePaddle develop version is required!")
version_split = version.split('.')
length = min(len(version_installed), len(version_split))
for i in six.moves.range(length):
if version_installed[i] > version_split[i]:
return
if version_installed[i] < version_split[i]:
raise Exception(err)
def check_trt_version(version='8.2'):
err = "TensorRT version {} or higher is required," \
"Please make sure the version is good with your code.".format(version)
version_split = list(map(int, version.split('.')))
version_installed = get_trt_runtime_version()
length = min(len(version_installed), len(version_split))
for i in six.moves.range(length):
if version_installed[i] > version_split[i]:
return
if version_installed[i] < version_split[i]:
raise Exception(err)
# preprocess ops
def decode_image(im_file, im_info):
if isinstance(im_file, str):
with open(im_file, 'rb') as f:
im_read = f.read()
data = np.frombuffer(im_read, dtype='uint8')
im = cv2.imdecode(data, 1) # BGR mode, but need RGB mode
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
else:
im = im_file
im_info['im_shape'] = np.array(im.shape[:2], dtype=np.float32)
im_info['scale_factor'] = np.array([1., 1.], dtype=np.float32)
return im, im_info
class Resize(object):
def __init__(self, target_size, keep_ratio=True, interp=cv2.INTER_LINEAR):
if isinstance(target_size, int):
target_size = [target_size, target_size]
self.target_size = target_size
self.keep_ratio = keep_ratio
self.interp = interp
def __call__(self, im, im_info):
assert len(self.target_size) == 2
assert self.target_size[0] > 0 and self.target_size[1] > 0
im_channel = im.shape[2]
im_scale_y, im_scale_x = self.generate_scale(im)
im = cv2.resize(
im,
None,
None,
fx=im_scale_x,
fy=im_scale_y,
interpolation=self.interp)
im_info['im_shape'] = np.array(im.shape[:2]).astype('float32')
im_info['scale_factor'] = np.array(
[im_scale_y, im_scale_x]).astype('float32')
return im, im_info
def generate_scale(self, im):
origin_shape = im.shape[:2]
im_c = im.shape[2]
if self.keep_ratio:
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(self.target_size)
target_size_max = np.max(self.target_size)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
else:
resize_h, resize_w = self.target_size
im_scale_y = resize_h / float(origin_shape[0])
im_scale_x = resize_w / float(origin_shape[1])
return im_scale_y, im_scale_x
class Permute(object):
def __init__(self, ):
super(Permute, self).__init__()
def __call__(self, im, im_info):
im = im.transpose((2, 0, 1))
return im, im_info
class NormalizeImage(object):
def __init__(self, mean, std, is_scale=True, norm_type='mean_std'):
self.mean = mean
self.std = std
self.is_scale = is_scale
self.norm_type = norm_type
def __call__(self, im, im_info):
im = im.astype(np.float32, copy=False)
if self.is_scale:
scale = 1.0 / 255.0
im *= scale
if self.norm_type == 'mean_std':
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
im -= mean
im /= std
return im, im_info
class PadStride(object):
def __init__(self, stride=0):
self.coarsest_stride = stride
def __call__(self, im, im_info):
coarsest_stride = self.coarsest_stride
if coarsest_stride <= 0:
return im, im_info
im_c, im_h, im_w = im.shape
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = im
return padding_im, im_info
def preprocess(im, preprocess_ops):
# process image by preprocess_ops
im_info = {
'scale_factor': np.array(
[1., 1.], dtype=np.float32),
'im_shape': None,
}
im, im_info = decode_image(im, im_info)
for operator in preprocess_ops:
im, im_info = operator(im, im_info)
return im, im_info
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model_dir', type=str, help='directory of inference model')
parser.add_argument(
'--run_mode', type=str, default='paddle', help='running mode')
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument(
'--image_dir',
type=str,
default='/paddle/data/DOTA_1024_ss/test1024/images',
help='directory of test images')
parser.add_argument(
'--warmup_iter', type=int, default=5, help='num of warmup iters')
parser.add_argument(
'--total_iter', type=int, default=2000, help='num of total iters')
parser.add_argument(
'--log_iter', type=int, default=50, help='num of log interval')
parser.add_argument(
'--tuned_trt_shape_file',
type=str,
default='shape_range_info.pbtxt',
help='dynamic shape range info')
args = parser.parse_args()
return args
def init_predictor(FLAGS):
model_dir, run_mode, batch_size = FLAGS.model_dir, FLAGS.run_mode, FLAGS.batch_size
yaml_file = os.path.join(model_dir, 'infer_cfg.yml')
with open(yaml_file) as f:
yml_conf = yaml.safe_load(f)
config = Config(
os.path.join(model_dir, 'model.pdmodel'),
os.path.join(model_dir, 'model.pdiparams'))
# initial GPU memory(M), device ID
config.enable_use_gpu(200, 0)
# optimize graph and fuse op
config.switch_ir_optim(True)
precision_map = {
'trt_int8': Config.Precision.Int8,
'trt_fp32': Config.Precision.Float32,
'trt_fp16': Config.Precision.Half
}
arch = yml_conf['arch']
tuned_trt_shape_file = os.path.join(model_dir, FLAGS.tuned_trt_shape_file)
if run_mode in precision_map.keys():
if arch in TUNED_TRT_DYNAMIC_MODELS and not os.path.exists(
tuned_trt_shape_file):
print(
'dynamic shape range info is saved in {}. After that, rerun the code'.
format(tuned_trt_shape_file))
config.collect_shape_range_info(tuned_trt_shape_file)
config.enable_tensorrt_engine(
workspace_size=(1 << 25) * batch_size,
max_batch_size=batch_size,
min_subgraph_size=yml_conf['min_subgraph_size'],
precision_mode=precision_map[run_mode],
use_static=True,
use_calib_mode=False)
if yml_conf['use_dynamic_shape']:
if arch in TUNED_TRT_DYNAMIC_MODELS and os.path.exists(
tuned_trt_shape_file):
config.enable_tuned_tensorrt_dynamic_shape(tuned_trt_shape_file,
True)
else:
min_input_shape = {
'image': [batch_size, 3, 640, 640],
'scale_factor': [batch_size, 2]
}
max_input_shape = {
'image': [batch_size, 3, 1280, 1280],
'scale_factor': [batch_size, 2]
}
opt_input_shape = {
'image': [batch_size, 3, 1024, 1024],
'scale_factor': [batch_size, 2]
}
config.set_trt_dynamic_shape_info(
min_input_shape, max_input_shape, opt_input_shape)
# disable print log when predict
config.disable_glog_info()
# enable shared memory
config.enable_memory_optim()
# disable feed, fetch OP, needed by zero_copy_run
config.switch_use_feed_fetch_ops(False)
predictor = create_predictor(config)
return predictor, yml_conf
def create_preprocess_ops(yml_conf):
preprocess_ops = []
for op_info in yml_conf['Preprocess']:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
preprocess_ops.append(eval(op_type)(**new_op_info))
return preprocess_ops
def get_test_images(image_dir):
images = set()
infer_dir = os.path.abspath(image_dir)
exts = ['jpg', 'jpeg', 'png', 'bmp']
exts += [ext.upper() for ext in exts]
for ext in exts:
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
images = list(images)
return images
def create_inputs(image_files, preprocess_ops):
inputs = dict()
im_list, im_info_list = [], []
for im_path in image_files:
im, im_info = preprocess(im_path, preprocess_ops)
im_list.append(im)
im_info_list.append(im_info)
inputs['im_shape'] = np.stack(
[e['im_shape'] for e in im_info_list], axis=0).astype('float32')
inputs['scale_factor'] = np.stack(
[e['scale_factor'] for e in im_info_list], axis=0).astype('float32')
inputs['image'] = np.stack(im_list, axis=0).astype('float32')
return inputs
def measure_speed(FLAGS):
predictor, yml_conf = init_predictor(FLAGS)
input_names = predictor.get_input_names()
preprocess_ops = create_preprocess_ops(yml_conf)
image_files = get_test_images(FLAGS.image_dir)
batch_size = FLAGS.batch_size
warmup_iter, log_iter, total_iter = FLAGS.warmup_iter, FLAGS.log_iter, FLAGS.total_iter
total_time = 0
fps = 0
for i in range(0, total_iter, batch_size):
# make data ready
inputs = create_inputs(image_files[i:i + batch_size], preprocess_ops)
for name in input_names:
input_tensor = predictor.get_input_handle(name)
input_tensor.copy_from_cpu(inputs[name])
paddle.device.cuda.synchronize()
# start running
start_time = time.perf_counter()
predictor.run()
paddle.device.cuda.synchronize()
if i >= warmup_iter:
total_time += time.perf_counter() - start_time
if (i + 1) % log_iter == 0:
fps = (i + 1 - warmup_iter) / total_time
print(
f'Done image [{i + 1:<3}/ {total_iter}], '
f'fps: {fps:.1f} img / s, '
f'times per image: {1000 / fps:.1f} ms / img',
flush=True)
if (i + 1) == total_iter:
fps = (i + 1 - warmup_iter) / total_time
print(
f'Overall fps: {fps:.1f} img / s, '
f'times per image: {1000 / fps:.1f} ms / img',
flush=True)
break
if __name__ == '__main__':
FLAGS = parse_args()
if 'trt' in FLAGS.run_mode:
check_version('develop')
check_trt_version('8.2')
else:
check_version('2.4')
measure_speed(FLAGS)