437 lines
16 KiB
Python
437 lines
16 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import cv2
|
|
import time
|
|
import numpy as np
|
|
import collections
|
|
import math
|
|
|
|
__all__ = [
|
|
'MOTTimer', 'Detection', 'write_mot_results', 'load_det_results',
|
|
'preprocess_reid', 'get_crops', 'clip_box', 'scale_coords',
|
|
'flow_statistic', 'update_object_info'
|
|
]
|
|
|
|
|
|
class MOTTimer(object):
|
|
"""
|
|
This class used to compute and print the current FPS while evaling.
|
|
"""
|
|
|
|
def __init__(self, window_size=20):
|
|
self.start_time = 0.
|
|
self.diff = 0.
|
|
self.duration = 0.
|
|
self.deque = collections.deque(maxlen=window_size)
|
|
|
|
def tic(self):
|
|
# using time.time instead of time.clock because time time.clock
|
|
# does not normalize for multithreading
|
|
self.start_time = time.time()
|
|
|
|
def toc(self, average=True):
|
|
self.diff = time.time() - self.start_time
|
|
self.deque.append(self.diff)
|
|
if average:
|
|
self.duration = np.mean(self.deque)
|
|
else:
|
|
self.duration = np.sum(self.deque)
|
|
return self.duration
|
|
|
|
def clear(self):
|
|
self.start_time = 0.
|
|
self.diff = 0.
|
|
self.duration = 0.
|
|
|
|
|
|
class Detection(object):
|
|
"""
|
|
This class represents a bounding box detection in a single image.
|
|
|
|
Args:
|
|
tlwh (Tensor): Bounding box in format `(top left x, top left y,
|
|
width, height)`.
|
|
score (Tensor): Bounding box confidence score.
|
|
feature (Tensor): A feature vector that describes the object
|
|
contained in this image.
|
|
cls_id (Tensor): Bounding box category id.
|
|
"""
|
|
|
|
def __init__(self, tlwh, score, feature, cls_id):
|
|
self.tlwh = np.asarray(tlwh, dtype=np.float32)
|
|
self.score = float(score)
|
|
self.feature = np.asarray(feature, dtype=np.float32)
|
|
self.cls_id = int(cls_id)
|
|
|
|
def to_tlbr(self):
|
|
"""
|
|
Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
|
|
`(top left, bottom right)`.
|
|
"""
|
|
ret = self.tlwh.copy()
|
|
ret[2:] += ret[:2]
|
|
return ret
|
|
|
|
def to_xyah(self):
|
|
"""
|
|
Convert bounding box to format `(center x, center y, aspect ratio,
|
|
height)`, where the aspect ratio is `width / height`.
|
|
"""
|
|
ret = self.tlwh.copy()
|
|
ret[:2] += ret[2:] / 2
|
|
ret[2] /= ret[3]
|
|
return ret
|
|
|
|
|
|
def write_mot_results(filename, results, data_type='mot', num_classes=1):
|
|
# support single and multi classes
|
|
if data_type in ['mot', 'mcmot']:
|
|
save_format = '{frame},{id},{x1},{y1},{w},{h},{score},{cls_id},-1,-1\n'
|
|
elif data_type == 'kitti':
|
|
save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n'
|
|
else:
|
|
raise ValueError(data_type)
|
|
|
|
f = open(filename, 'w')
|
|
for cls_id in range(num_classes):
|
|
for frame_id, tlwhs, tscores, track_ids in results[cls_id]:
|
|
if data_type == 'kitti':
|
|
frame_id -= 1
|
|
for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
|
|
if track_id < 0: continue
|
|
if data_type == 'mot':
|
|
cls_id = -1
|
|
|
|
x1, y1, w, h = tlwh
|
|
x2, y2 = x1 + w, y1 + h
|
|
line = save_format.format(
|
|
frame=frame_id,
|
|
id=track_id,
|
|
x1=x1,
|
|
y1=y1,
|
|
x2=x2,
|
|
y2=y2,
|
|
w=w,
|
|
h=h,
|
|
score=score,
|
|
cls_id=cls_id)
|
|
f.write(line)
|
|
print('MOT results save in {}'.format(filename))
|
|
|
|
|
|
def load_det_results(det_file, num_frames):
|
|
assert os.path.exists(det_file) and os.path.isfile(det_file), \
|
|
'{} is not exist or not a file.'.format(det_file)
|
|
labels = np.loadtxt(det_file, dtype='float32', delimiter=',')
|
|
assert labels.shape[1] == 7, \
|
|
"Each line of {} should have 7 items: '[frame_id],[x0],[y0],[w],[h],[score],[class_id]'.".format(det_file)
|
|
results_list = []
|
|
for frame_i in range(num_frames):
|
|
results = {'bbox': [], 'score': [], 'cls_id': []}
|
|
lables_with_frame = labels[labels[:, 0] == frame_i + 1]
|
|
# each line of lables_with_frame:
|
|
# [frame_id],[x0],[y0],[w],[h],[score],[class_id]
|
|
for l in lables_with_frame:
|
|
results['bbox'].append(l[1:5])
|
|
results['score'].append(l[5:6])
|
|
results['cls_id'].append(l[6:7])
|
|
results_list.append(results)
|
|
return results_list
|
|
|
|
|
|
def scale_coords(coords, input_shape, im_shape, scale_factor):
|
|
# Note: ratio has only one value, scale_factor[0] == scale_factor[1]
|
|
#
|
|
# This function only used for JDE YOLOv3 or other detectors with
|
|
# LetterBoxResize and JDEBBoxPostProcess, coords output from detector had
|
|
# not scaled back to the origin image.
|
|
|
|
ratio = scale_factor[0]
|
|
pad_w = (input_shape[1] - int(im_shape[1])) / 2
|
|
pad_h = (input_shape[0] - int(im_shape[0])) / 2
|
|
coords[:, 0::2] -= pad_w
|
|
coords[:, 1::2] -= pad_h
|
|
coords[:, 0:4] /= ratio
|
|
coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max())
|
|
return coords.round()
|
|
|
|
|
|
def clip_box(xyxy, ori_image_shape):
|
|
H, W = ori_image_shape
|
|
xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=W)
|
|
xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=H)
|
|
w = xyxy[:, 2:3] - xyxy[:, 0:1]
|
|
h = xyxy[:, 3:4] - xyxy[:, 1:2]
|
|
mask = np.logical_and(h > 0, w > 0)
|
|
keep_idx = np.nonzero(mask)
|
|
return xyxy[keep_idx[0]], keep_idx
|
|
|
|
|
|
def get_crops(xyxy, ori_img, w, h):
|
|
crops = []
|
|
xyxy = xyxy.astype(np.int64)
|
|
ori_img = ori_img.transpose(1, 0, 2) # [h,w,3]->[w,h,3]
|
|
for i, bbox in enumerate(xyxy):
|
|
crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
|
|
crops.append(crop)
|
|
crops = preprocess_reid(crops, w, h)
|
|
return crops
|
|
|
|
|
|
def preprocess_reid(imgs,
|
|
w=64,
|
|
h=192,
|
|
mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225]):
|
|
im_batch = []
|
|
for img in imgs:
|
|
img = cv2.resize(img, (w, h))
|
|
img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
|
|
img_mean = np.array(mean).reshape((3, 1, 1))
|
|
img_std = np.array(std).reshape((3, 1, 1))
|
|
img -= img_mean
|
|
img /= img_std
|
|
img = np.expand_dims(img, axis=0)
|
|
im_batch.append(img)
|
|
im_batch = np.concatenate(im_batch, 0)
|
|
return im_batch
|
|
|
|
|
|
def flow_statistic(result,
|
|
secs_interval,
|
|
do_entrance_counting,
|
|
do_break_in_counting,
|
|
region_type,
|
|
video_fps,
|
|
entrance,
|
|
id_set,
|
|
interval_id_set,
|
|
in_id_list,
|
|
out_id_list,
|
|
prev_center,
|
|
records,
|
|
data_type='mot',
|
|
ids2names=['pedestrian']):
|
|
# Count in/out number:
|
|
# Note that 'region_type' should be one of ['horizontal', 'vertical', 'custom'],
|
|
# 'horizontal' and 'vertical' means entrance is the center line as the entrance when do_entrance_counting,
|
|
# 'custom' means entrance is a region defined by users when do_break_in_counting.
|
|
|
|
if do_entrance_counting:
|
|
assert region_type in [
|
|
'horizontal', 'vertical'
|
|
], "region_type should be 'horizontal' or 'vertical' when do entrance counting."
|
|
entrance_x, entrance_y = entrance[0], entrance[1]
|
|
frame_id, tlwhs, tscores, track_ids = result
|
|
for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
|
|
if track_id < 0: continue
|
|
if data_type == 'kitti':
|
|
frame_id -= 1
|
|
x1, y1, w, h = tlwh
|
|
center_x = x1 + w / 2.
|
|
center_y = y1 + h / 2.
|
|
if track_id in prev_center:
|
|
if region_type == 'horizontal':
|
|
# horizontal center line
|
|
if prev_center[track_id][1] <= entrance_y and \
|
|
center_y > entrance_y:
|
|
in_id_list.append(track_id)
|
|
if prev_center[track_id][1] >= entrance_y and \
|
|
center_y < entrance_y:
|
|
out_id_list.append(track_id)
|
|
else:
|
|
# vertical center line
|
|
if prev_center[track_id][0] <= entrance_x and \
|
|
center_x > entrance_x:
|
|
in_id_list.append(track_id)
|
|
if prev_center[track_id][0] >= entrance_x and \
|
|
center_x < entrance_x:
|
|
out_id_list.append(track_id)
|
|
prev_center[track_id][0] = center_x
|
|
prev_center[track_id][1] = center_y
|
|
else:
|
|
prev_center[track_id] = [center_x, center_y]
|
|
|
|
if do_break_in_counting:
|
|
assert region_type in [
|
|
'custom'
|
|
], "region_type should be 'custom' when do break_in counting."
|
|
assert len(
|
|
entrance
|
|
) >= 4, "entrance should be at least 3 points and (w,h) of image when do break_in counting."
|
|
im_w, im_h = entrance[-1][:]
|
|
entrance = np.array(entrance[:-1])
|
|
|
|
frame_id, tlwhs, tscores, track_ids = result
|
|
for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
|
|
if track_id < 0: continue
|
|
if data_type == 'kitti':
|
|
frame_id -= 1
|
|
x1, y1, w, h = tlwh
|
|
center_x = min(x1 + w / 2., im_w - 1)
|
|
if ids2names[0] == 'pedestrian':
|
|
center_y = min(y1 + h, im_h - 1)
|
|
else:
|
|
center_y = min(y1 + h / 2, im_h - 1)
|
|
|
|
# counting objects in region of the first frame
|
|
if frame_id == 1:
|
|
if in_quadrangle([center_x, center_y], entrance, im_h, im_w):
|
|
in_id_list.append(-1)
|
|
else:
|
|
prev_center[track_id] = [center_x, center_y]
|
|
else:
|
|
if track_id in prev_center:
|
|
if not in_quadrangle(prev_center[track_id], entrance, im_h,
|
|
im_w) and in_quadrangle(
|
|
[center_x, center_y], entrance,
|
|
im_h, im_w):
|
|
in_id_list.append(track_id)
|
|
prev_center[track_id] = [center_x, center_y]
|
|
else:
|
|
prev_center[track_id] = [center_x, center_y]
|
|
|
|
# Count totol number, number at a manual-setting interval
|
|
frame_id, tlwhs, tscores, track_ids = result
|
|
for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
|
|
if track_id < 0: continue
|
|
id_set.add(track_id)
|
|
interval_id_set.add(track_id)
|
|
|
|
# Reset counting at the interval beginning
|
|
if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0:
|
|
curr_interval_count = len(interval_id_set)
|
|
interval_id_set.clear()
|
|
info = "Frame id: {}, Total count: {}".format(frame_id, len(id_set))
|
|
if do_entrance_counting:
|
|
info += ", In count: {}, Out count: {}".format(
|
|
len(in_id_list), len(out_id_list))
|
|
if do_break_in_counting:
|
|
info += ", Break_in count: {}".format(len(in_id_list))
|
|
if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0:
|
|
info += ", Count during {} secs: {}".format(secs_interval,
|
|
curr_interval_count)
|
|
interval_id_set.clear()
|
|
# print(info)
|
|
info += "\n"
|
|
records.append(info)
|
|
|
|
return {
|
|
"id_set": id_set,
|
|
"interval_id_set": interval_id_set,
|
|
"in_id_list": in_id_list,
|
|
"out_id_list": out_id_list,
|
|
"prev_center": prev_center,
|
|
"records": records,
|
|
}
|
|
|
|
|
|
def distance(center_1, center_2):
|
|
return math.sqrt(
|
|
math.pow(center_1[0] - center_2[0], 2) + math.pow(center_1[1] -
|
|
center_2[1], 2))
|
|
|
|
|
|
# update vehicle parking info
|
|
def update_object_info(object_in_region_info,
|
|
result,
|
|
region_type,
|
|
entrance,
|
|
fps,
|
|
illegal_parking_time,
|
|
distance_threshold_frame=3,
|
|
distance_threshold_interval=50):
|
|
'''
|
|
For consecutive frames, the distance between two frame is smaller than distance_threshold_frame, regard as parking
|
|
For parking in general, the move distance should smaller than distance_threshold_interval
|
|
The moving distance of the vehicle is scaled according to the y, which is inversely proportional to y.
|
|
'''
|
|
|
|
assert region_type in [
|
|
'custom'
|
|
], "region_type should be 'custom' when do break_in counting."
|
|
assert len(
|
|
entrance
|
|
) >= 4, "entrance should be at least 3 points and (w,h) of image when do break_in counting."
|
|
|
|
frame_id, tlwhs, tscores, track_ids = result # result from mot
|
|
|
|
im_w, im_h = entrance[-1][:]
|
|
entrance = np.array(entrance[:-1])
|
|
|
|
illegal_parking_dict = {}
|
|
for tlwh, score, track_id in zip(tlwhs, tscores, track_ids):
|
|
if track_id < 0: continue
|
|
|
|
x1, y1, w, h = tlwh
|
|
center_x = min(x1 + w / 2., im_w - 1)
|
|
center_y = min(y1 + h / 2, im_h - 1)
|
|
|
|
if not in_quadrangle([center_x, center_y], entrance, im_h, im_w):
|
|
continue
|
|
|
|
current_center = (center_x, center_y)
|
|
if track_id not in object_in_region_info.keys(
|
|
): # first time appear in region
|
|
object_in_region_info[track_id] = {}
|
|
object_in_region_info[track_id]["start_frame"] = frame_id
|
|
object_in_region_info[track_id]["end_frame"] = frame_id
|
|
object_in_region_info[track_id]["prev_center"] = current_center
|
|
object_in_region_info[track_id]["start_center"] = current_center
|
|
else:
|
|
prev_center = object_in_region_info[track_id]["prev_center"]
|
|
|
|
dis = distance(current_center, prev_center)
|
|
scaled_dis = 200 * dis / (
|
|
current_center[1] + 1) # scale distance according to y
|
|
dis = scaled_dis
|
|
|
|
if dis < distance_threshold_frame: # not move
|
|
object_in_region_info[track_id]["end_frame"] = frame_id
|
|
object_in_region_info[track_id]["prev_center"] = current_center
|
|
else: # move
|
|
object_in_region_info[track_id]["start_frame"] = frame_id
|
|
object_in_region_info[track_id]["end_frame"] = frame_id
|
|
object_in_region_info[track_id]["prev_center"] = current_center
|
|
object_in_region_info[track_id]["start_center"] = current_center
|
|
|
|
# whether current object parking
|
|
distance_from_start = distance(
|
|
object_in_region_info[track_id]["start_center"], current_center)
|
|
if distance_from_start > distance_threshold_interval:
|
|
# moved
|
|
object_in_region_info[track_id]["start_frame"] = frame_id
|
|
object_in_region_info[track_id]["end_frame"] = frame_id
|
|
object_in_region_info[track_id]["prev_center"] = current_center
|
|
object_in_region_info[track_id]["start_center"] = current_center
|
|
continue
|
|
|
|
if (object_in_region_info[track_id]["end_frame"]-object_in_region_info[track_id]["start_frame"]) /fps >= illegal_parking_time \
|
|
and distance_from_start<distance_threshold_interval:
|
|
illegal_parking_dict[track_id] = {"bbox": [x1, y1, w, h]}
|
|
|
|
return object_in_region_info, illegal_parking_dict
|
|
|
|
|
|
def in_quadrangle(point, entrance, im_h, im_w):
|
|
mask = np.zeros((im_h, im_w, 1), np.uint8)
|
|
cv2.fillPoly(mask, [entrance], 255)
|
|
p = tuple(map(int, point))
|
|
if mask[p[1], p[0], :] > 0:
|
|
return True
|
|
else:
|
|
return False
|