Files
fcb_photo_review/paddle_detection/ppdet/data/source/dataset.py
2024-08-27 14:42:45 +08:00

308 lines
9.7 KiB
Python

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import copy
import numpy as np
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
from paddle.io import Dataset
from ppdet.core.workspace import register, serializable
from ppdet.utils.download import get_dataset_path
from ppdet.data import source
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
@serializable
class DetDataset(Dataset):
"""
Load detection dataset.
Args:
dataset_dir (str): root directory for dataset.
image_dir (str): directory for images.
anno_path (str): annotation file path.
data_fields (list): key name of data dictionary, at least have 'image'.
sample_num (int): number of samples to load, -1 means all.
use_default_label (bool): whether to load default label list.
repeat (int): repeat times for dataset, use in benchmark.
"""
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
data_fields=['image'],
sample_num=-1,
use_default_label=None,
repeat=1,
**kwargs):
super(DetDataset, self).__init__()
self.dataset_dir = dataset_dir if dataset_dir is not None else ''
self.anno_path = anno_path
self.image_dir = image_dir if image_dir is not None else ''
self.data_fields = data_fields
self.sample_num = sample_num
self.use_default_label = use_default_label
self.repeat = repeat
self._epoch = 0
self._curr_iter = 0
def __len__(self, ):
return len(self.roidbs) * self.repeat
def __call__(self, *args, **kwargs):
return self
def __getitem__(self, idx):
n = len(self.roidbs)
if self.repeat > 1:
idx %= n
# data batch
roidb = copy.deepcopy(self.roidbs[idx])
if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
idx = np.random.randint(n)
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
idx = np.random.randint(n)
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
roidb = [roidb, ] + [
copy.deepcopy(self.roidbs[np.random.randint(n)])
for _ in range(4)
]
elif self.pre_img_epoch == 0 or self._epoch < self.pre_img_epoch:
# Add previous image as input, only used in CenterTrack
idx_pre_img = idx - 1
if idx_pre_img < 0:
idx_pre_img = idx + 1
roidb = [roidb, ] + [copy.deepcopy(self.roidbs[idx_pre_img])]
if isinstance(roidb, Sequence):
for r in roidb:
r['curr_iter'] = self._curr_iter
else:
roidb['curr_iter'] = self._curr_iter
self._curr_iter += 1
return self.transform(roidb)
def check_or_download_dataset(self):
self.dataset_dir = get_dataset_path(self.dataset_dir, self.anno_path,
self.image_dir)
def set_kwargs(self, **kwargs):
self.mixup_epoch = kwargs.get('mixup_epoch', -1)
self.cutmix_epoch = kwargs.get('cutmix_epoch', -1)
self.mosaic_epoch = kwargs.get('mosaic_epoch', -1)
self.pre_img_epoch = kwargs.get('pre_img_epoch', -1)
def set_transform(self, transform):
self.transform = transform
def set_epoch(self, epoch_id):
self._epoch = epoch_id
def parse_dataset(self, ):
raise NotImplementedError(
"Need to implement parse_dataset method of Dataset")
def get_anno(self):
if self.anno_path is None:
return
return os.path.join(self.dataset_dir, self.anno_path)
def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')):
return f.lower().endswith(extensions)
def _make_dataset(dir):
dir = os.path.expanduser(dir)
if not os.path.isdir(dir):
raise ('{} should be a dir'.format(dir))
images = []
for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
for fname in sorted(fnames):
path = os.path.join(root, fname)
if _is_valid_file(path):
images.append(path)
return images
@register
@serializable
class ImageFolder(DetDataset):
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
sample_num=-1,
use_default_label=None,
**kwargs):
super(ImageFolder, self).__init__(
dataset_dir,
image_dir,
anno_path,
sample_num=sample_num,
use_default_label=use_default_label)
self._imid2path = {}
self.roidbs = None
self.sample_num = sample_num
def check_or_download_dataset(self):
return
def get_anno(self):
if self.anno_path is None:
return
if self.dataset_dir:
return os.path.join(self.dataset_dir, self.anno_path)
else:
return self.anno_path
def parse_dataset(self, ):
if not self.roidbs:
self.roidbs = self._load_images()
def _parse(self):
image_dir = self.image_dir
if not isinstance(image_dir, Sequence):
image_dir = [image_dir]
images = []
for im_dir in image_dir:
if os.path.isdir(im_dir):
im_dir = os.path.join(self.dataset_dir, im_dir)
images.extend(_make_dataset(im_dir))
elif os.path.isfile(im_dir) and _is_valid_file(im_dir):
images.append(im_dir)
return images
def _load_images(self):
images = self._parse()
ct = 0
records = []
for image in images:
assert image != '' and os.path.isfile(image), \
"Image {} not found".format(image)
if self.sample_num > 0 and ct >= self.sample_num:
break
rec = {'im_id': np.array([ct]), 'im_file': image}
self._imid2path[ct] = image
ct += 1
records.append(rec)
assert len(records) > 0, "No image file found"
return records
def get_imid2path(self):
return self._imid2path
def set_images(self, images):
self.image_dir = images
self.roidbs = self._load_images()
def set_slice_images(self,
images,
slice_size=[640, 640],
overlap_ratio=[0.25, 0.25]):
self.image_dir = images
ori_records = self._load_images()
try:
import sahi
from sahi.slicing import slice_image
except Exception as e:
logger.error(
'sahi not found, plaese install sahi. '
'for example: `pip install sahi`, see https://github.com/obss/sahi.'
)
raise e
sub_img_ids = 0
ct = 0
ct_sub = 0
records = []
for i, ori_rec in enumerate(ori_records):
im_path = ori_rec['im_file']
slice_image_result = sahi.slicing.slice_image(
image=im_path,
slice_height=slice_size[0],
slice_width=slice_size[1],
overlap_height_ratio=overlap_ratio[0],
overlap_width_ratio=overlap_ratio[1])
sub_img_num = len(slice_image_result)
for _ind in range(sub_img_num):
im = slice_image_result.images[_ind]
rec = {
'image': im,
'im_id': np.array([sub_img_ids + _ind]),
'h': im.shape[0],
'w': im.shape[1],
'ori_im_id': np.array([ori_rec['im_id'][0]]),
'st_pix': np.array(
slice_image_result.starting_pixels[_ind],
dtype=np.float32),
'is_last': 1 if _ind == sub_img_num - 1 else 0,
} if 'image' in self.data_fields else {}
records.append(rec)
ct_sub += sub_img_num
ct += 1
logger.info('{} samples and slice to {} sub_samples.'.format(ct,
ct_sub))
self.roidbs = records
def get_label_list(self):
# Only VOC dataset needs label list in ImageFold
return self.anno_path
@register
class CommonDataset(object):
def __init__(self, **dataset_args):
super(CommonDataset, self).__init__()
dataset_args = copy.deepcopy(dataset_args)
type = dataset_args.pop("name")
self.dataset = getattr(source, type)(**dataset_args)
def __call__(self):
return self.dataset
@register
class TrainDataset(CommonDataset):
pass
@register
class EvalMOTDataset(CommonDataset):
pass
@register
class TestMOTDataset(CommonDataset):
pass
@register
class EvalDataset(CommonDataset):
pass
@register
class TestDataset(CommonDataset):
pass