69 lines
2.8 KiB
Markdown
69 lines
2.8 KiB
Markdown
简体中文 | [English](README.md)
|
||
|
||
# CLRNet (CLRNet: Cross Layer Refinement Network for Lane Detection)
|
||
|
||
## 目录
|
||
- [简介](#简介)
|
||
- [模型库](#模型库)
|
||
- [引用](#引用)
|
||
|
||
## 介绍
|
||
|
||
[CLRNet](https://arxiv.org/abs/2203.10350)是一个车道线检测模型。CLRNet模型设计了车道线检测的直线先验轨迹,车道线iou以及nms方法,融合提取车道线轨迹的上下文高层特征与底层特征,利用FPN多尺度进行refine,在车道线检测相关数据集取得了SOTA的性能。
|
||
|
||
## 模型库
|
||
|
||
### CLRNet在CUlane上结果
|
||
|
||
| 骨架网络 | mF1 | F1@50 | F1@75 | 下载链接 | 配置文件 |训练日志|
|
||
| :--------------| :------- | :----: | :------: | :----: |:-----: |:-----: |
|
||
| ResNet-18 | 54.98 | 79.46 | 62.10 | [下载链接](https://paddledet.bj.bcebos.com/models/clrnet_resnet18_culane.pdparams) | [配置文件](./clrnet_resnet18_culane.yml) |[训练日志](https://bj.bcebos.com/v1/paddledet/logs/train_clrnet_r18_15_culane.log)|
|
||
|
||
### 数据集下载
|
||
下载[CULane数据集](https://xingangpan.github.io/projects/CULane.html)并解压到`dataset/culane`目录。
|
||
|
||
您的数据集目录结构如下:
|
||
```shell
|
||
culane/driver_xx_xxframe # data folders x6
|
||
culane/laneseg_label_w16 # lane segmentation labels
|
||
culane/list # data lists
|
||
```
|
||
如果您使用百度云链接下载,注意确保`driver_23_30frame_part1.tar.gz`和`driver_23_30frame_part2.tar.gz`解压后的文件都在`driver_23_30frame`目录下。
|
||
|
||
现已将用于测试的小数据集上传到PaddleDetection,可通过运行训练脚本,自动下载并解压数据,如需复现结果请下载链接中的全量数据集训练。
|
||
|
||
### 训练
|
||
- GPU单卡训练
|
||
```shell
|
||
python tools/train.py -c configs/clrnet/clr_resnet18_culane.yml
|
||
```
|
||
- GPU多卡训练
|
||
```shell
|
||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/clrnet/clr_resnet18_culane.yml
|
||
```
|
||
|
||
### 评估
|
||
```shell
|
||
python tools/eval.py -c configs/clrnet/clr_resnet18_culane.yml -o weights=output/clr_resnet18_culane/model_final.pdparams
|
||
```
|
||
|
||
### 预测
|
||
```shell
|
||
python tools/infer_culane.py -c configs/clrnet/clr_resnet18_culane.yml -o weights=output/clr_resnet18_culane/model_final.pdparams --infer_img=demo/lane00000.jpg
|
||
```
|
||
|
||
注意:预测功能暂不支持模型静态图推理部署。
|
||
|
||
## 引用
|
||
```
|
||
@InProceedings{Zheng_2022_CVPR,
|
||
author = {Zheng, Tu and Huang, Yifei and Liu, Yang and Tang, Wenjian and Yang, Zheng and Cai, Deng and He, Xiaofei},
|
||
title = {CLRNet: Cross Layer Refinement Network for Lane Detection},
|
||
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
||
month = {June},
|
||
year = {2022},
|
||
pages = {898-907}
|
||
}
|
||
```
|