245 lines
9.2 KiB
Python
245 lines
9.2 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from ppdet.core.workspace import register
|
|
from .centernet_head import ConvLayer
|
|
from ..keypoint_utils import get_affine_transform
|
|
|
|
__all__ = ['CenterTrackHead']
|
|
|
|
|
|
@register
|
|
class CenterTrackHead(nn.Layer):
|
|
"""
|
|
Args:
|
|
in_channels (int): the channel number of input to CenterNetHead.
|
|
num_classes (int): the number of classes, 1 (MOT17 dataset) by default.
|
|
head_planes (int): the channel number in all head, 256 by default.
|
|
task (str): the type of task for regression, 'tracking' by default.
|
|
loss_weight (dict): the weight of each loss.
|
|
add_ltrb_amodal (bool): whether to add ltrb_amodal branch, False by default.
|
|
"""
|
|
|
|
__shared__ = ['num_classes']
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
num_classes=1,
|
|
head_planes=256,
|
|
task='tracking',
|
|
loss_weight={
|
|
'tracking': 1.0,
|
|
'ltrb_amodal': 0.1,
|
|
},
|
|
add_ltrb_amodal=True):
|
|
super(CenterTrackHead, self).__init__()
|
|
self.task = task
|
|
self.loss_weight = loss_weight
|
|
self.add_ltrb_amodal = add_ltrb_amodal
|
|
|
|
# tracking head
|
|
self.tracking = nn.Sequential(
|
|
ConvLayer(
|
|
in_channels, head_planes, kernel_size=3, padding=1, bias=True),
|
|
nn.ReLU(),
|
|
ConvLayer(
|
|
head_planes, 2, kernel_size=1, stride=1, padding=0, bias=True))
|
|
|
|
# ltrb_amodal head
|
|
if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
|
|
self.ltrb_amodal = nn.Sequential(
|
|
ConvLayer(
|
|
in_channels,
|
|
head_planes,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=True),
|
|
nn.ReLU(),
|
|
ConvLayer(
|
|
head_planes,
|
|
4,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0,
|
|
bias=True))
|
|
|
|
# TODO: add more tasks
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, input_shape):
|
|
if isinstance(input_shape, (list, tuple)):
|
|
input_shape = input_shape[0]
|
|
return {'in_channels': input_shape.channels}
|
|
|
|
def forward(self,
|
|
feat,
|
|
inputs,
|
|
bboxes=None,
|
|
bbox_inds=None,
|
|
topk_clses=None,
|
|
topk_ys=None,
|
|
topk_xs=None):
|
|
tracking = self.tracking(feat)
|
|
head_outs = {'tracking': tracking}
|
|
if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
|
|
ltrb_amodal = self.ltrb_amodal(feat)
|
|
head_outs.update({'ltrb_amodal': ltrb_amodal})
|
|
|
|
if self.training:
|
|
losses = self.get_loss(inputs, self.loss_weight, head_outs)
|
|
return losses
|
|
else:
|
|
ret = self.generic_decode(head_outs, bboxes, bbox_inds, topk_ys,
|
|
topk_xs)
|
|
return ret
|
|
|
|
def get_loss(self, inputs, weights, head_outs):
|
|
index = inputs['index'].unsqueeze(2)
|
|
mask = inputs['index_mask'].unsqueeze(2)
|
|
batch_inds = list()
|
|
for i in range(head_outs['tracking'].shape[0]):
|
|
batch_ind = paddle.full(
|
|
shape=[1, index.shape[1], 1], fill_value=i, dtype='int64')
|
|
batch_inds.append(batch_ind)
|
|
batch_inds = paddle.concat(batch_inds, axis=0)
|
|
index = paddle.concat(x=[batch_inds, index], axis=2)
|
|
|
|
# 1.tracking head loss: L1 loss
|
|
tracking = head_outs['tracking'].transpose([0, 2, 3, 1])
|
|
tracking_target = inputs['tracking']
|
|
bs, _, _, c = tracking.shape
|
|
tracking = tracking.reshape([bs, -1, c])
|
|
pos_tracking = paddle.gather_nd(tracking, index=index)
|
|
tracking_mask = paddle.cast(
|
|
paddle.expand_as(mask, pos_tracking), dtype=pos_tracking.dtype)
|
|
pos_num = tracking_mask.sum()
|
|
tracking_mask.stop_gradient = True
|
|
tracking_target.stop_gradient = True
|
|
tracking_loss = F.l1_loss(
|
|
pos_tracking * tracking_mask,
|
|
tracking_target * tracking_mask,
|
|
reduction='sum')
|
|
tracking_loss = tracking_loss / (pos_num + 1e-4)
|
|
|
|
# 2.ltrb_amodal head loss(optinal): L1 loss
|
|
if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
|
|
ltrb_amodal = head_outs['ltrb_amodal'].transpose([0, 2, 3, 1])
|
|
ltrb_amodal_target = inputs['ltrb_amodal']
|
|
bs, _, _, c = ltrb_amodal.shape
|
|
ltrb_amodal = ltrb_amodal.reshape([bs, -1, c])
|
|
pos_ltrb_amodal = paddle.gather_nd(ltrb_amodal, index=index)
|
|
ltrb_amodal_mask = paddle.cast(
|
|
paddle.expand_as(mask, pos_ltrb_amodal),
|
|
dtype=pos_ltrb_amodal.dtype)
|
|
pos_num = ltrb_amodal_mask.sum()
|
|
ltrb_amodal_mask.stop_gradient = True
|
|
ltrb_amodal_target.stop_gradient = True
|
|
ltrb_amodal_loss = F.l1_loss(
|
|
pos_ltrb_amodal * ltrb_amodal_mask,
|
|
ltrb_amodal_target * ltrb_amodal_mask,
|
|
reduction='sum')
|
|
ltrb_amodal_loss = ltrb_amodal_loss / (pos_num + 1e-4)
|
|
|
|
losses = {'tracking_loss': tracking_loss, }
|
|
plugin_loss = weights['tracking'] * tracking_loss
|
|
|
|
if self.add_ltrb_amodal and 'ltrb_amodal' in self.loss_weight:
|
|
losses.update({'ltrb_amodal_loss': ltrb_amodal_loss})
|
|
plugin_loss += weights['ltrb_amodal'] * ltrb_amodal_loss
|
|
losses.update({'plugin_loss': plugin_loss})
|
|
return losses
|
|
|
|
def generic_decode(self, head_outs, bboxes, bbox_inds, topk_ys, topk_xs):
|
|
topk_ys = paddle.floor(topk_ys) # note: More accurate
|
|
topk_xs = paddle.floor(topk_xs)
|
|
cts = paddle.concat([topk_xs, topk_ys], 1)
|
|
ret = {'bboxes': bboxes, 'cts': cts}
|
|
|
|
regression_heads = ['tracking'] # todo: add more tasks
|
|
for head in regression_heads:
|
|
if head in head_outs:
|
|
ret[head] = _tranpose_and_gather_feat(head_outs[head],
|
|
bbox_inds)
|
|
|
|
if 'ltrb_amodal' in head_outs:
|
|
ltrb_amodal = head_outs['ltrb_amodal']
|
|
ltrb_amodal = _tranpose_and_gather_feat(ltrb_amodal, bbox_inds)
|
|
bboxes_amodal = paddle.concat(
|
|
[
|
|
topk_xs * 1.0 + ltrb_amodal[..., 0:1],
|
|
topk_ys * 1.0 + ltrb_amodal[..., 1:2],
|
|
topk_xs * 1.0 + ltrb_amodal[..., 2:3],
|
|
topk_ys * 1.0 + ltrb_amodal[..., 3:4]
|
|
],
|
|
axis=1)
|
|
ret['bboxes'] = paddle.concat([bboxes[:, 0:2], bboxes_amodal], 1)
|
|
# cls_id, score, x0, y0, x1, y1
|
|
|
|
return ret
|
|
|
|
def centertrack_post_process(self, dets, meta, out_thresh):
|
|
if not ('bboxes' in dets):
|
|
return [{}]
|
|
|
|
preds = []
|
|
c, s = meta['center'].numpy(), meta['scale'].numpy()
|
|
h, w = meta['out_height'].numpy(), meta['out_width'].numpy()
|
|
trans = get_affine_transform(
|
|
center=c[0],
|
|
input_size=s[0],
|
|
rot=0,
|
|
output_size=[w[0], h[0]],
|
|
shift=(0., 0.),
|
|
inv=True).astype(np.float32)
|
|
for i, dets_bbox in enumerate(dets['bboxes']):
|
|
if dets_bbox[1] < out_thresh:
|
|
break
|
|
item = {}
|
|
item['score'] = dets_bbox[1]
|
|
item['class'] = int(dets_bbox[0]) + 1
|
|
item['ct'] = transform_preds_with_trans(
|
|
dets['cts'][i].reshape([1, 2]), trans).reshape(2)
|
|
|
|
if 'tracking' in dets:
|
|
tracking = transform_preds_with_trans(
|
|
(dets['tracking'][i] + dets['cts'][i]).reshape([1, 2]),
|
|
trans).reshape(2)
|
|
item['tracking'] = tracking - item['ct']
|
|
|
|
if 'bboxes' in dets:
|
|
bbox = transform_preds_with_trans(
|
|
dets_bbox[2:6].reshape([2, 2]), trans).reshape(4)
|
|
item['bbox'] = bbox
|
|
|
|
preds.append(item)
|
|
return preds
|
|
|
|
|
|
def transform_preds_with_trans(coords, trans):
|
|
target_coords = np.ones((coords.shape[0], 3), np.float32)
|
|
target_coords[:, :2] = coords
|
|
target_coords = np.dot(trans, target_coords.transpose()).transpose()
|
|
return target_coords[:, :2]
|
|
|
|
|
|
def _tranpose_and_gather_feat(feat, bbox_inds):
|
|
feat = feat.transpose([0, 2, 3, 1])
|
|
feat = feat.reshape([-1, feat.shape[3]])
|
|
feat = paddle.gather(feat, bbox_inds)
|
|
return feat
|