Files
fcb_photo_review/services/paddle_services/doc_dewarp/GeoTr.py
2024-09-24 17:10:56 +08:00

399 lines
12 KiB
Python

import copy
from typing import Optional
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from .extractor import BasicEncoder
from .position_encoding import build_position_encoding
from .weight_init import weight_init_
class attnLayer(nn.Layer):
def __init__(
self,
d_model,
nhead=8,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
):
super().__init__()
self.self_attn = nn.MultiHeadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn_list = nn.LayerList(
[
copy.deepcopy(nn.MultiHeadAttention(d_model, nhead, dropout=dropout))
for i in range(2)
]
)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(p=dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2_list = nn.LayerList(
[copy.deepcopy(nn.LayerNorm(d_model)) for i in range(2)]
)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(p=dropout)
self.dropout2_list = nn.LayerList(
[copy.deepcopy(nn.Dropout(p=dropout)) for i in range(2)]
)
self.dropout3 = nn.Dropout(p=dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[paddle.Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
tgt,
memory_list,
tgt_mask=None,
memory_mask=None,
pos=None,
memory_pos=None,
):
q = k = self.with_pos_embed(tgt, pos)
tgt2 = self.self_attn(
q.transpose((1, 0, 2)),
k.transpose((1, 0, 2)),
value=tgt.transpose((1, 0, 2)),
attn_mask=tgt_mask,
)
tgt2 = tgt2.transpose((1, 0, 2))
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
for memory, multihead_attn, norm2, dropout2, m_pos in zip(
memory_list,
self.multihead_attn_list,
self.norm2_list,
self.dropout2_list,
memory_pos,
):
tgt2 = multihead_attn(
query=self.with_pos_embed(tgt, pos).transpose((1, 0, 2)),
key=self.with_pos_embed(memory, m_pos).transpose((1, 0, 2)),
value=memory.transpose((1, 0, 2)),
attn_mask=memory_mask,
).transpose((1, 0, 2))
tgt = tgt + dropout2(tgt2)
tgt = norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward_pre(
self,
tgt,
memory,
tgt_mask=None,
memory_mask=None,
pos=None,
memory_pos=None,
):
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask)
tgt = tgt + self.dropout1(tgt2)
tgt2 = self.norm2(tgt)
tgt2 = self.multihead_attn(
query=self.with_pos_embed(tgt2, pos),
key=self.with_pos_embed(memory, memory_pos),
value=memory,
attn_mask=memory_mask,
)
tgt = tgt + self.dropout2(tgt2)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
def forward(
self,
tgt,
memory_list,
tgt_mask=None,
memory_mask=None,
pos=None,
memory_pos=None,
):
if self.normalize_before:
return self.forward_pre(
tgt,
memory_list,
tgt_mask,
memory_mask,
pos,
memory_pos,
)
return self.forward_post(
tgt,
memory_list,
tgt_mask,
memory_mask,
pos,
memory_pos,
)
def _get_clones(module, N):
return nn.LayerList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
class TransDecoder(nn.Layer):
def __init__(self, num_attn_layers: int, hidden_dim: int = 128):
super(TransDecoder, self).__init__()
attn_layer = attnLayer(hidden_dim)
self.layers = _get_clones(attn_layer, num_attn_layers)
self.position_embedding = build_position_encoding(hidden_dim)
def forward(self, image: paddle.Tensor, query_embed: paddle.Tensor):
pos = self.position_embedding(
paddle.ones([image.shape[0], image.shape[2], image.shape[3]], dtype="bool")
)
b, c, h, w = image.shape
image = image.flatten(2).transpose(perm=[2, 0, 1])
pos = pos.flatten(2).transpose(perm=[2, 0, 1])
for layer in self.layers:
query_embed = layer(query_embed, [image], pos=pos, memory_pos=[pos, pos])
query_embed = query_embed.transpose(perm=[1, 2, 0]).reshape([b, c, h, w])
return query_embed
class TransEncoder(nn.Layer):
def __init__(self, num_attn_layers: int, hidden_dim: int = 128):
super(TransEncoder, self).__init__()
attn_layer = attnLayer(hidden_dim)
self.layers = _get_clones(attn_layer, num_attn_layers)
self.position_embedding = build_position_encoding(hidden_dim)
def forward(self, image: paddle.Tensor):
pos = self.position_embedding(
paddle.ones([image.shape[0], image.shape[2], image.shape[3]], dtype="bool")
)
b, c, h, w = image.shape
image = image.flatten(2).transpose(perm=[2, 0, 1])
pos = pos.flatten(2).transpose(perm=[2, 0, 1])
for layer in self.layers:
image = layer(image, [image], pos=pos, memory_pos=[pos, pos])
image = image.transpose(perm=[1, 2, 0]).reshape([b, c, h, w])
return image
class FlowHead(nn.Layer):
def __init__(self, input_dim=128, hidden_dim=256):
super(FlowHead, self).__init__()
self.conv1 = nn.Conv2D(input_dim, hidden_dim, 3, padding=1)
self.conv2 = nn.Conv2D(hidden_dim, 2, 3, padding=1)
self.relu = nn.ReLU()
def forward(self, x):
return self.conv2(self.relu(self.conv1(x)))
class UpdateBlock(nn.Layer):
def __init__(self, hidden_dim: int = 128):
super(UpdateBlock, self).__init__()
self.flow_head = FlowHead(hidden_dim, hidden_dim=256)
self.mask = nn.Sequential(
nn.Conv2D(hidden_dim, 256, 3, padding=1),
nn.ReLU(),
nn.Conv2D(256, 64 * 9, 1, padding=0),
)
def forward(self, image, coords):
mask = 0.25 * self.mask(image)
dflow = self.flow_head(image)
coords = coords + dflow
return mask, coords
def coords_grid(batch, ht, wd):
coords = paddle.meshgrid(paddle.arange(end=ht), paddle.arange(end=wd))
coords = paddle.stack(coords[::-1], axis=0).astype(dtype="float32")
return coords[None].tile([batch, 1, 1, 1])
def upflow8(flow, mode="bilinear"):
new_size = 8 * flow.shape[2], 8 * flow.shape[3]
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
class OverlapPatchEmbed(nn.Layer):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
super().__init__()
img_size = img_size if isinstance(img_size, tuple) else (img_size, img_size)
patch_size = (
patch_size if isinstance(patch_size, tuple) else (patch_size, patch_size)
)
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = nn.Conv2D(
in_chans,
embed_dim,
patch_size,
stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2),
)
self.norm = nn.LayerNorm(embed_dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
weight_init_(m, "trunc_normal_", std=0.02)
elif isinstance(m, nn.LayerNorm):
weight_init_(m, "Constant", value=1.0)
elif isinstance(m, nn.Conv2D):
weight_init_(
m.weight, "kaiming_normal_", mode="fan_out", nonlinearity="relu"
)
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2)
perm = list(range(x.ndim))
perm[1] = 2
perm[2] = 1
x = x.transpose(perm=perm)
x = self.norm(x)
return x, H, W
class GeoTr(nn.Layer):
def __init__(self):
super(GeoTr, self).__init__()
self.hidden_dim = hdim = 256
self.fnet = BasicEncoder(output_dim=hdim, norm_fn="instance")
self.encoder_block = [("encoder_block" + str(i)) for i in range(3)]
for i in self.encoder_block:
self.__setattr__(i, TransEncoder(2, hidden_dim=hdim))
self.down_layer = [("down_layer" + str(i)) for i in range(2)]
for i in self.down_layer:
self.__setattr__(i, nn.Conv2D(256, 256, 3, stride=2, padding=1))
self.decoder_block = [("decoder_block" + str(i)) for i in range(3)]
for i in self.decoder_block:
self.__setattr__(i, TransDecoder(2, hidden_dim=hdim))
self.up_layer = [("up_layer" + str(i)) for i in range(2)]
for i in self.up_layer:
self.__setattr__(
i, nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
)
self.query_embed = nn.Embedding(81, self.hidden_dim)
self.update_block = UpdateBlock(self.hidden_dim)
def initialize_flow(self, img):
N, _, H, W = img.shape
coodslar = coords_grid(N, H, W)
coords0 = coords_grid(N, H // 8, W // 8)
coords1 = coords_grid(N, H // 8, W // 8)
return coodslar, coords0, coords1
def upsample_flow(self, flow, mask):
N, _, H, W = flow.shape
mask = mask.reshape([N, 1, 9, 8, 8, H, W])
mask = F.softmax(mask, axis=2)
up_flow = F.unfold(8 * flow, [3, 3], paddings=1)
up_flow = up_flow.reshape([N, 2, 9, 1, 1, H, W])
up_flow = paddle.sum(mask * up_flow, axis=2)
up_flow = up_flow.transpose(perm=[0, 1, 4, 2, 5, 3])
return up_flow.reshape([N, 2, 8 * H, 8 * W])
def forward(self, image):
fmap = self.fnet(image)
fmap = F.relu(fmap)
fmap1 = self.__getattr__(self.encoder_block[0])(fmap)
fmap1d = self.__getattr__(self.down_layer[0])(fmap1)
fmap2 = self.__getattr__(self.encoder_block[1])(fmap1d)
fmap2d = self.__getattr__(self.down_layer[1])(fmap2)
fmap3 = self.__getattr__(self.encoder_block[2])(fmap2d)
query_embed0 = self.query_embed.weight.unsqueeze(1).tile([1, fmap3.shape[0], 1])
fmap3d_ = self.__getattr__(self.decoder_block[0])(fmap3, query_embed0)
fmap3du_ = (
self.__getattr__(self.up_layer[0])(fmap3d_)
.flatten(2)
.transpose(perm=[2, 0, 1])
)
fmap2d_ = self.__getattr__(self.decoder_block[1])(fmap2, fmap3du_)
fmap2du_ = (
self.__getattr__(self.up_layer[1])(fmap2d_)
.flatten(2)
.transpose(perm=[2, 0, 1])
)
fmap_out = self.__getattr__(self.decoder_block[2])(fmap1, fmap2du_)
coodslar, coords0, coords1 = self.initialize_flow(image)
coords1 = coords1.detach()
mask, coords1 = self.update_block(fmap_out, coords1)
flow_up = self.upsample_flow(coords1 - coords0, mask)
bm_up = coodslar + flow_up
return bm_up